Local sensitivity and deep learning analysis of heat transfer in an arc-shaped lid-driven cavity using hybrid nanofluids in dihydrogen monoxide under quadratic magnetoconvection

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Sami Ul haq , Muhammad Bilal Ashraf , Sultan Alshehery , Kaouther Ghachem , Aboulbaba Eladeb , Lioua Kolsi
{"title":"Local sensitivity and deep learning analysis of heat transfer in an arc-shaped lid-driven cavity using hybrid nanofluids in dihydrogen monoxide under quadratic magnetoconvection","authors":"Sami Ul haq ,&nbsp;Muhammad Bilal Ashraf ,&nbsp;Sultan Alshehery ,&nbsp;Kaouther Ghachem ,&nbsp;Aboulbaba Eladeb ,&nbsp;Lioua Kolsi","doi":"10.1016/j.ijhydene.2025.151701","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates fluid flow and heat transfer in an arc-shaped lid-driven cavity filled with Cu–Al<sub>2</sub>O<sub>3</sub>/water nanofluid under quadratic magnetoconvection. The coupled Navier–Stokes and energy equations are solved using the finite element method with the Newton–Pardiso solver. Two objectives are addressed: (i) sensitivity analysis of six governing parameters on the average Nusselt number using response surface methodology (central composite design and analysis of variance in MINITAB 21) and (ii) prediction of the Nusselt number using a Levenberg–Marquardt artificial neural network trained in MATLAB 21. Results show that the Richardson number exerts the strongest influence on heat transfer. Quadratic magnetoconvection enhances circulation and lowers average temperature, with greater impact on streamlines and isotherms than linear convection. The Eckert number further intensifies flow and thermal fields. Overall, the arc-shaped cavity achieves an 8.48 % higher heat transfer rate compared to a flat-wall cavity, underscoring its superior thermal performance.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"181 ","pages":"Article 151701"},"PeriodicalIF":8.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925047032","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates fluid flow and heat transfer in an arc-shaped lid-driven cavity filled with Cu–Al2O3/water nanofluid under quadratic magnetoconvection. The coupled Navier–Stokes and energy equations are solved using the finite element method with the Newton–Pardiso solver. Two objectives are addressed: (i) sensitivity analysis of six governing parameters on the average Nusselt number using response surface methodology (central composite design and analysis of variance in MINITAB 21) and (ii) prediction of the Nusselt number using a Levenberg–Marquardt artificial neural network trained in MATLAB 21. Results show that the Richardson number exerts the strongest influence on heat transfer. Quadratic magnetoconvection enhances circulation and lowers average temperature, with greater impact on streamlines and isotherms than linear convection. The Eckert number further intensifies flow and thermal fields. Overall, the arc-shaped cavity achieves an 8.48 % higher heat transfer rate compared to a flat-wall cavity, underscoring its superior thermal performance.
二次磁对流条件下二氢氧化氢混合纳米流体弧形盖驱动腔内换热的局部灵敏度和深度学习分析
研究了二次磁对流条件下Cu-Al2O3 /水纳米流体填充的弧形盖驱动腔内的流体流动和传热。利用Newton-Pardiso求解器对耦合的Navier-Stokes方程和能量方程进行了有限元求解。解决了两个目标:(i)使用响应面方法(MINITAB 21中的中心复合设计和方差分析)对平均努塞尔数的六个控制参数进行敏感性分析,(ii)使用MATLAB 21中训练的Levenberg-Marquardt人工神经网络预测努塞尔数。结果表明,理查德森数对换热影响最大。二次磁对流增强环流,降低平均温度,对流线和等温线的影响大于线性对流。埃克特数进一步强化了流场和热场。总体而言,与平壁腔相比,弧形腔实现了8.48%的高传热率,强调了其优越的热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信