Dong Hyun Han, Yurim Kim, Yu-Jin Park, Dong-Yeon Song, Jongho Park, Jeonghwan Oh, Dong-Myung Kim, Je-Kyun Park
{"title":"Pushbutton-activated microfluidic cell-free biosensor for multiplexed pathogen detection","authors":"Dong Hyun Han, Yurim Kim, Yu-Jin Park, Dong-Yeon Song, Jongho Park, Jeonghwan Oh, Dong-Myung Kim, Je-Kyun Park","doi":"10.1039/d5lc00337g","DOIUrl":null,"url":null,"abstract":"In this paper, we have developed a novel cell-free biosensor based on a multiplexed pushbutton-activated microfluidic device (mPAMD) that enables simultaneous detection of multiple 16S rRNAs of pathogens in a single device. The multi-step target-responsive cell-free protein synthesis process was seamlessly integrated into a single microfluidic device with an intuitive finger-pumping mechanism, allowing simultaneous mixing, aliquoting, and detection of 16S rRNAs through the production of reporter proteins. The mPAMD incorporates multiplexed detection zones with pathogen-specific probes to enable the identification of multiple 16S rRNAs that allow a simple and intuitive diagnostic platform for cell-free biosensors. Microchannels were designed and optimized to achieve efficient sample mixing and even distribution of common reagents, ensuring uniform reaction conditions across all reaction channels. The developed system achieved a detection limit for 16S rRNA ranging from 1.69 to 7.39 pM, corresponding to approximately 10<small><sup>4</sup></small> to 10<small><sup>5</sup></small> CFU/mL of pathogens. These results address the growing demand for an accessible multiplexed diagnostic system while ensuring high sensitivity and specificity.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"201 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00337g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we have developed a novel cell-free biosensor based on a multiplexed pushbutton-activated microfluidic device (mPAMD) that enables simultaneous detection of multiple 16S rRNAs of pathogens in a single device. The multi-step target-responsive cell-free protein synthesis process was seamlessly integrated into a single microfluidic device with an intuitive finger-pumping mechanism, allowing simultaneous mixing, aliquoting, and detection of 16S rRNAs through the production of reporter proteins. The mPAMD incorporates multiplexed detection zones with pathogen-specific probes to enable the identification of multiple 16S rRNAs that allow a simple and intuitive diagnostic platform for cell-free biosensors. Microchannels were designed and optimized to achieve efficient sample mixing and even distribution of common reagents, ensuring uniform reaction conditions across all reaction channels. The developed system achieved a detection limit for 16S rRNA ranging from 1.69 to 7.39 pM, corresponding to approximately 104 to 105 CFU/mL of pathogens. These results address the growing demand for an accessible multiplexed diagnostic system while ensuring high sensitivity and specificity.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.