Maria del Mar Cerrillo-Gonzalez, Raffaele Casaburo, Giuseppina Luciani, Juan Manuel Paz-Garcia, Jose Miguel Rodriguez-Maroto, Maria Villen-Guzman
{"title":"Simultaneous electrodialytic recovery of HCl and LiOH from LiCl: Modeling, optimization and experimental validation","authors":"Maria del Mar Cerrillo-Gonzalez, Raffaele Casaburo, Giuseppina Luciani, Juan Manuel Paz-Garcia, Jose Miguel Rodriguez-Maroto, Maria Villen-Guzman","doi":"10.1016/j.seppur.2025.135426","DOIUrl":null,"url":null,"abstract":"The growing demand for lithium-ion batteries (LIBs) highlights the need for sustainable recycling technologies. Electro-electrodialysis (EED) has emerged as a promising alternative for regenerating chemical reagents and recovering lithium-based salts from hydrometallurgical leachates. This study investigates the electrodialytic production of HCl and LiOH from LiCl solutions using a four compartment EED cell. A mathematical model was developed to describe ions transports, acid and base regeneration and energy consumption, incorporating electrochemical and mass transport parameters. The model was validated through five batch-mode EED experiments under different operating conditions. Experimental results validated the model's accuracy in predicting the concentrations of Li<sup>+</sup>, Cl<sup>−</sup>, H<sup>+</sup> and OH<sup>−</sup> over time, as well as the voltage and specific energy consumption, with R<sup>2</sup> values above 0.99. The optimal performance was achieved under conditions of high initial LiOH concentration (0.5 M) and low electrode distance (8 cm), which minimized the energy consumption while maintaining high product yields. Conversely, higher initial acid concentrations reduced ion recovery, likely due to increased ionic competition and membrane transport resistance. Under the optimal conditions, specific energy consumption reached value8.3 kWh·kg<sup>−1</sup> HCl and 13.7 kWh·kg<sup>−1</sup> LiOH. The validated model provides a reliable tool for optimizing EED performance and reducing experimental effort. This work demonstrates the feasibility of using EED to selectively generate acid and base from LiCl-rich solutions and supports the development of more efficient approaches for LIB recycling.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"103 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.135426","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for lithium-ion batteries (LIBs) highlights the need for sustainable recycling technologies. Electro-electrodialysis (EED) has emerged as a promising alternative for regenerating chemical reagents and recovering lithium-based salts from hydrometallurgical leachates. This study investigates the electrodialytic production of HCl and LiOH from LiCl solutions using a four compartment EED cell. A mathematical model was developed to describe ions transports, acid and base regeneration and energy consumption, incorporating electrochemical and mass transport parameters. The model was validated through five batch-mode EED experiments under different operating conditions. Experimental results validated the model's accuracy in predicting the concentrations of Li+, Cl−, H+ and OH− over time, as well as the voltage and specific energy consumption, with R2 values above 0.99. The optimal performance was achieved under conditions of high initial LiOH concentration (0.5 M) and low electrode distance (8 cm), which minimized the energy consumption while maintaining high product yields. Conversely, higher initial acid concentrations reduced ion recovery, likely due to increased ionic competition and membrane transport resistance. Under the optimal conditions, specific energy consumption reached value8.3 kWh·kg−1 HCl and 13.7 kWh·kg−1 LiOH. The validated model provides a reliable tool for optimizing EED performance and reducing experimental effort. This work demonstrates the feasibility of using EED to selectively generate acid and base from LiCl-rich solutions and supports the development of more efficient approaches for LIB recycling.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.