{"title":"Revealing the Active State of a Cu/ZnO:Al Catalyst During Reverse Water-Gas Shift Reaction in an Operando Microwave Absorption Study.","authors":"Zohreh Asadi,Clara Patricia Marshall,Annette Trunschke,Thomas Risse","doi":"10.1002/anie.202504280","DOIUrl":null,"url":null,"abstract":"The industrially important Cu/ZnO:Al (CZA) catalyst is known as a dynamic system adapting to reaction conditions, which renders the application of in situ and operando methods key to establish structure function correlations. Herein, a CZA catalyst close to the industrially used compostion was studied using noninvasive and bulk-sensitive in situ/operando microwave cavity perturbation technique and electron paramagnetic resonance spectroscopy during activation and reverse water gas shift reaction. The transient changes of catalytic activity track with the transients of the dielectric properties providing evidence for the importance of bulk properties for catalytic activity. Furthermore, convincing support for the redox reaction mechanism is obtained, and it is shown that H2 and CO2 uptake is not competing kinetically with each other. In addition, the reservoir of H2 and CO2 transiently present in the catalyst during catalysis is determined by the chemical potential of the respective reactant, which is directly coupled to the catalytic activity of the system. The findings fit the model of a Schottky barrier at the Cu/ZnO:Al interface, altered by the gas phase composition which in turn alters the catalytic properties of the system.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"25 1","pages":"e202504280"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504280","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The industrially important Cu/ZnO:Al (CZA) catalyst is known as a dynamic system adapting to reaction conditions, which renders the application of in situ and operando methods key to establish structure function correlations. Herein, a CZA catalyst close to the industrially used compostion was studied using noninvasive and bulk-sensitive in situ/operando microwave cavity perturbation technique and electron paramagnetic resonance spectroscopy during activation and reverse water gas shift reaction. The transient changes of catalytic activity track with the transients of the dielectric properties providing evidence for the importance of bulk properties for catalytic activity. Furthermore, convincing support for the redox reaction mechanism is obtained, and it is shown that H2 and CO2 uptake is not competing kinetically with each other. In addition, the reservoir of H2 and CO2 transiently present in the catalyst during catalysis is determined by the chemical potential of the respective reactant, which is directly coupled to the catalytic activity of the system. The findings fit the model of a Schottky barrier at the Cu/ZnO:Al interface, altered by the gas phase composition which in turn alters the catalytic properties of the system.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.