MoO2-Mediated Ni─Fe Bond Contraction and Electronic Modulation in Ni3Fe Alloy for Efficient Water Electrolysis at High-Current-Densities.

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liancen Li,Haotian Xu,Guangfu Qian,Xinyu Cao,Jiawei Li,Yihao Xu,Ruyu Zhang,Douyong Min,Jinli Chen,Panagiotis Tsiakaras
{"title":"MoO2-Mediated Ni─Fe Bond Contraction and Electronic Modulation in Ni3Fe Alloy for Efficient Water Electrolysis at High-Current-Densities.","authors":"Liancen Li,Haotian Xu,Guangfu Qian,Xinyu Cao,Jiawei Li,Yihao Xu,Ruyu Zhang,Douyong Min,Jinli Chen,Panagiotis Tsiakaras","doi":"10.1002/adma.202512658","DOIUrl":null,"url":null,"abstract":"Ni3Fe alloy electrocatalysts show promising activity for water electrolysis but are limited by sluggish hydrogen/oxygen evolution reaction (HER/OER) kinetics, and inefficient gas-liquid mass transfer under high-current-densities. Here, a superhydrophilic/superaerophobic 3D carbonized wood-loaded Ni3Fe-MoO2 (Ni3Fe/MoO2/CW) heterojunction is designed to address these challenges. X-ray absorption fine structure (XAFS) and theoretical calculations reveal that the introduction of MoO2 shortens the Ni─Fe bond length, induces electron transfer from Ni3Fe to MoO2, and regulates the d-band center of Ni/Fe. These optimized Ni─Fe bonds and electronic structure enhance H─OH bond dissociation and H* adsorption/desorption, thereby accelerating the HER Volmer-Heyrovsky step. Simultaneously, for the OER adsorption evolution mechanism on Ni3Fe (1.462 eV), the strengthened Ni─O─Mo bond on Ni3Fe-MoO2 heterojunction reduces the energy barrier (1.092 eV) of the rate-determining step, significantly improving catalytic efficiency. Thus, Ni3Fe/MoO2/CW displays good activity (HER: η-10/-750 = 45/342 mV; OER: η300/1000 = 251/306 mV). Notably, the large specific area of Ni3Fe/MoO2/CW from its nanosheet-particle structure enhances the electrolyte/bubble exchange at the gas-liquid-solid three-phase interface, enabling stable operation at 1000 mA cm-2 for 24 h in an anion exchange membrane electrolyzer. This work demonstrates a MoO2-driven strategy for electronic modulation and metal bond regulation to boost HER/OER kinetics, advancing Ni3Fe-based catalysts toward practical high-current-densities water electrolysis.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"18 1","pages":"e12658"},"PeriodicalIF":26.8000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202512658","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ni3Fe alloy electrocatalysts show promising activity for water electrolysis but are limited by sluggish hydrogen/oxygen evolution reaction (HER/OER) kinetics, and inefficient gas-liquid mass transfer under high-current-densities. Here, a superhydrophilic/superaerophobic 3D carbonized wood-loaded Ni3Fe-MoO2 (Ni3Fe/MoO2/CW) heterojunction is designed to address these challenges. X-ray absorption fine structure (XAFS) and theoretical calculations reveal that the introduction of MoO2 shortens the Ni─Fe bond length, induces electron transfer from Ni3Fe to MoO2, and regulates the d-band center of Ni/Fe. These optimized Ni─Fe bonds and electronic structure enhance H─OH bond dissociation and H* adsorption/desorption, thereby accelerating the HER Volmer-Heyrovsky step. Simultaneously, for the OER adsorption evolution mechanism on Ni3Fe (1.462 eV), the strengthened Ni─O─Mo bond on Ni3Fe-MoO2 heterojunction reduces the energy barrier (1.092 eV) of the rate-determining step, significantly improving catalytic efficiency. Thus, Ni3Fe/MoO2/CW displays good activity (HER: η-10/-750 = 45/342 mV; OER: η300/1000 = 251/306 mV). Notably, the large specific area of Ni3Fe/MoO2/CW from its nanosheet-particle structure enhances the electrolyte/bubble exchange at the gas-liquid-solid three-phase interface, enabling stable operation at 1000 mA cm-2 for 24 h in an anion exchange membrane electrolyzer. This work demonstrates a MoO2-driven strategy for electronic modulation and metal bond regulation to boost HER/OER kinetics, advancing Ni3Fe-based catalysts toward practical high-current-densities water electrolysis.
高电流密度下Ni3Fe合金中moo2介导的Ni─Fe键收缩和电子调制
Ni3Fe合金电催化剂在水电解方面表现出良好的活性,但受氢/氧析反应(HER/OER)动力学缓慢以及高电流密度下气液传质效率低下的限制。为了解决这些问题,研究人员设计了一种超亲水性/超疏水性3D碳化木负载Ni3Fe-MoO2 (Ni3Fe/MoO2/CW)异质结。x射线吸收精细结构(XAFS)和理论计算表明,MoO2的引入缩短了Ni─Fe键的长度,诱导了电子从Ni3Fe向MoO2的转移,并调节了Ni/Fe的d波段中心。这些优化的Ni─Fe键和电子结构增强了H─OH键的解离和H*的吸附/解吸,从而加速了HER的Volmer-Heyrovsky步骤。同时,对于Ni3Fe (1.462 eV)上OER吸附演化机制,Ni3Fe- moo2异质结上Ni─O─Mo键的增强降低了速率决定步骤的能垒(1.092 eV),显著提高了催化效率。因此,Ni3Fe/MoO2/CW表现出良好的活性(HER: η-10/-750 = 45/342 mV; OER: η300/1000 = 251/306 mV)。值得注意的是,Ni3Fe/MoO2/CW纳米片-颗粒结构的大比表面积增强了气-液-固三相界面的电解质/气泡交换,使其在阴离子交换膜电解槽中以1000 mA cm-2的速度稳定运行24小时。这项工作展示了moo2驱动的电子调制和金属键调节策略,以提高HER/OER动力学,将ni3fe基催化剂推向实用的高电流密度水电解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信