A rationally designed scalable thin film nanocomposite cation exchange membrane for precise lithium extraction.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuren Feng,Yifan Zhu,Weiqiang Chen,Xiaochuan Huang,Xintong Weng,Matthew D Meyer,Tsai-Hsuan Chen,Yiming Liu,Ze He,Chia-Hung Hou,Kuichang Zuo,Ngai Yin Yip,Kai Gong,Jun Lou,Qilin Li
{"title":"A rationally designed scalable thin film nanocomposite cation exchange membrane for precise lithium extraction.","authors":"Yuren Feng,Yifan Zhu,Weiqiang Chen,Xiaochuan Huang,Xintong Weng,Matthew D Meyer,Tsai-Hsuan Chen,Yiming Liu,Ze He,Chia-Hung Hou,Kuichang Zuo,Ngai Yin Yip,Kai Gong,Jun Lou,Qilin Li","doi":"10.1038/s41467-025-63660-3","DOIUrl":null,"url":null,"abstract":"Precise separation of ions of the same polarity and similar valence and size remains a critical need in resource recovery from waste streams. Here, we report the rational design and scalable fabrication of a thin film nanocomposite (TFN) cation exchange membrane to achieve precise selectivity for lithium over competing cations. The precise selectivity is realized by an ultrathin polyamide (PA) layer incorporated with amine functionalized β-monoclinic lithium titanium oxide (N-LTO) nanoparticles using a scalable interfacial polymerization process that allows high N-LTO loading while minimizing interfacial defects. The TFN membrane demonstrates superior Li+ permeability, with Li+/Ca2+ and Li+/Na+ selectivity reaching 173.90 and 13.58, respectively. The Li+/Na+ selectivity is attributed to the Li+-exclusive transport pathway in the layered structure of the N-LTO, while size exclusion by the highly cross-linked N-LTO-PA also contrubutes to the Li+/Ca2+ selectivity. Molecular dynamics simulation shows that the electrical field drives Li+ dehydration and accelerates the migration of the dehydrated Li+ while Na+ is blocked due to its larger size than the Li+ cavity. The high Li+ selectivity and permeability enable energy-efficient, precise, and chemical-free lithium extraction using the electrodialysis process. The TFN membrane architecture also allows simple and scalable fabrication of a multi-functional polymer-inorganic nanocomposite membrane.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"100 1","pages":"8618"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63660-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Precise separation of ions of the same polarity and similar valence and size remains a critical need in resource recovery from waste streams. Here, we report the rational design and scalable fabrication of a thin film nanocomposite (TFN) cation exchange membrane to achieve precise selectivity for lithium over competing cations. The precise selectivity is realized by an ultrathin polyamide (PA) layer incorporated with amine functionalized β-monoclinic lithium titanium oxide (N-LTO) nanoparticles using a scalable interfacial polymerization process that allows high N-LTO loading while minimizing interfacial defects. The TFN membrane demonstrates superior Li+ permeability, with Li+/Ca2+ and Li+/Na+ selectivity reaching 173.90 and 13.58, respectively. The Li+/Na+ selectivity is attributed to the Li+-exclusive transport pathway in the layered structure of the N-LTO, while size exclusion by the highly cross-linked N-LTO-PA also contrubutes to the Li+/Ca2+ selectivity. Molecular dynamics simulation shows that the electrical field drives Li+ dehydration and accelerates the migration of the dehydrated Li+ while Na+ is blocked due to its larger size than the Li+ cavity. The high Li+ selectivity and permeability enable energy-efficient, precise, and chemical-free lithium extraction using the electrodialysis process. The TFN membrane architecture also allows simple and scalable fabrication of a multi-functional polymer-inorganic nanocomposite membrane.
一种合理设计的可伸缩薄膜纳米复合阳离子交换膜用于锂的精确提取。
精确分离相同极性、相似价和大小的离子仍然是从废物流中回收资源的关键需要。在这里,我们报道了一种薄膜纳米复合材料(TFN)阳离子交换膜的合理设计和可扩展制造,以实现锂对竞争阳离子的精确选择性。精确的选择性是通过超薄聚酰胺(PA)层结合胺功能化β-单斜锂钛氧化物(N-LTO)纳米颗粒实现的,采用可扩展的界面聚合工艺,可以在最大限度地减少界面缺陷的同时实现高N-LTO负载。TFN膜具有优异的Li+通透性,Li+/Ca2+和Li+/Na+的选择性分别达到173.90和13.58。Li+/Na+的选择性归因于N-LTO层状结构中Li+的排他性传输途径,而高度交联的N-LTO- pa的尺寸排他性也有助于Li+/Ca2+的选择性。分子动力学模拟表明,电场驱动Li+脱水,加速了脱水后Li+的迁移,而Na+由于比Li+腔大而被阻挡。高Li+选择性和渗透性使得使用电渗析工艺高效、精确和无化学物质的锂提取成为可能。TFN膜结构也允许简单和可扩展的多功能聚合物-无机纳米复合膜的制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信