{"title":"Large linear high-frequency strain by interlocked monoclinic polar nanoregions.","authors":"Yue-Yu-Shan Cheng,Xiaoming Shi,Liang Shu,Qingyu He,Yizhe Li,Jin Luo,Sixu Wang,Yi-Xuan Liu,Lisha Liu,Lizhong Wang,Ziqi Yang,Wei Li,Xin Zhang,Liyu Wei,Yongqi Dong,Sarah J Haigh,David A Hall,Minlin Zhong,Zhenlin Luo,Qian Li,Houbing Huang,Shujun Zhang,Jing-Feng Li","doi":"10.1038/s41563-025-02354-z","DOIUrl":null,"url":null,"abstract":"Ferroelectric films with large and linear strains are crucial for precision microactuator applications, especially at high frequencies. However, existing strategies that rely on frequency- and temperature-dependent dynamics have had limited success in enhancing strain response under such conditions. Here, through promoted local strain fluctuation, we achieve an interlocked polar configuration in spin-coated epitaxial (K,Na)NbO3-based ferroelectric films. The films demonstrate high-frequency strains exceeding 1.1% with high linearity and stability even when measured at 105 Hz. The presence of interlocked monoclinic and tetragonal polar nanoregions boosts piezoelectric response by promoting polarization dynamics across a broad frequency range. Additionally, the interplay between two distinct polarization switching mechanisms, arising from different symmetries and boundary conditions, mutually compensates, contributing to the observed overall linearity. This approach presents a promising yet facile strategy for achieving ferroelectric films with reliable, large and linear strain across a wide high-frequency range.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02354-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroelectric films with large and linear strains are crucial for precision microactuator applications, especially at high frequencies. However, existing strategies that rely on frequency- and temperature-dependent dynamics have had limited success in enhancing strain response under such conditions. Here, through promoted local strain fluctuation, we achieve an interlocked polar configuration in spin-coated epitaxial (K,Na)NbO3-based ferroelectric films. The films demonstrate high-frequency strains exceeding 1.1% with high linearity and stability even when measured at 105 Hz. The presence of interlocked monoclinic and tetragonal polar nanoregions boosts piezoelectric response by promoting polarization dynamics across a broad frequency range. Additionally, the interplay between two distinct polarization switching mechanisms, arising from different symmetries and boundary conditions, mutually compensates, contributing to the observed overall linearity. This approach presents a promising yet facile strategy for achieving ferroelectric films with reliable, large and linear strain across a wide high-frequency range.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.