Comparison of chiral limit studies in a curvature mass versus on-shell renormalized quark-meson model using ChPT

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Vivek Kumar Tiwari
{"title":"Comparison of chiral limit studies in a curvature mass versus on-shell renormalized quark-meson model using ChPT","authors":"Vivek Kumar Tiwari","doi":"10.1103/9zzh-d65x","DOIUrl":null,"url":null,"abstract":"Consistent chiral limit has been investigated in the curvature mass parametrized quark-meson (QM) model with the quark one-loop vacuum term (QMVT) employing the infrared regularized chiral perturbation theory predicted scaling of the pion, kaon decay constants f</a:mi></a:mrow>π</a:mi></a:mrow></a:msub></a:mrow></a:math>, <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msub><c:mrow><c:mi>f</c:mi></c:mrow><c:mrow><c:mi>K</c:mi></c:mrow></c:msub></c:mrow></c:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msubsup><e:mrow><e:mi>M</e:mi></e:mrow><e:mrow><e:mi>η</e:mi></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msubsup><e:mo>=</e:mo><e:msubsup><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:mi>η</e:mi></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msubsup><e:mo>+</e:mo><e:msubsup><e:mrow><e:mi>m</e:mi></e:mrow><e:mrow><e:msup><e:mrow><e:mi>η</e:mi></e:mrow><e:mrow><e:mo>′</e:mo></e:mrow></e:msup></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msubsup></e:mrow></e:math> when the <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>π</g:mi></g:math> and <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>K</i:mi></i:math> meson masses are reduced as one moves away from the physical point in the Columbia plot. Comparing the QMVT model Columbia plots with the corresponding Columbia plots computed in the very recent work of Tiwari [], using the on-shell renormalized QM (RQM) model and the earlier work of Resch [] using functional renormalization group techniques in the extended mean field approximation of the QM (e-MFA:QM-FRG) model, it has been estimated how the first, second, and crossover chiral transition regions in the <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>m</k:mi><k:mi>π</k:mi></k:msub><k:mo>−</k:mo><k:msub><k:mi>m</k:mi><k:mi>K</k:mi></k:msub></k:math>(<m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>m</m:mi><m:mrow><m:mi>u</m:mi><m:mi>d</m:mi></m:mrow></m:msub><m:mo>−</m:mo><m:msub><m:mi>m</m:mi><m:mi>s</m:mi></m:msub></m:math>) and the <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>μ</o:mi><o:mo>−</o:mo><o:msub><o:mi>m</o:mi><o:mi>K</o:mi></o:msub></o:math>(<q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>μ</q:mi><q:mo>−</q:mo><q:msub><q:mi>m</q:mi><q:mi>s</q:mi></q:msub></q:math>) planes get modified by different methods of implementing the quark one-loop vacuum fluctuations in the QM model. Since both the e-MFA:QM-FRG and the QMVT model use curvature meson masses to fix the parameters and the dimensional regularization of vacuum divergences are incorporated equivalently, the differences in their results can be attributed to different methods of approaching the chiral limit. The first order regions in the QMVT model while being much smaller than those in the RQM model have similar features but moderately smaller area than those in the e-MFA:QM-FRG study. In going to the chiral limit, the vacuum mass <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:msub><s:mi>m</s:mi><s:mi>σ</s:mi></s:msub><s:mo>=</s:mo><s:mn>530</s:mn><s:mtext> </s:mtext><s:mtext> </s:mtext><s:mi>MeV</s:mi></s:math> that is taken at the physical point does not change in the QMVT model whereas it decreases significantly in the e-MFA:QM-FRG study. Being different from the pole mass <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:msub><u:mi>m</u:mi><u:mi>σ</u:mi></u:msub><u:mo>=</u:mo><u:mn>530</u:mn><u:mtext> </u:mtext><u:mtext> </u:mtext><u:mi>MeV</u:mi></u:math>, the RQM model vacuum curvature mass <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mi>m</w:mi><w:mrow><w:mi>σ</w:mi><w:mo>,</w:mo><w:mi>c</w:mi></w:mrow></w:msub></w:math> increases toward the chiral limit from its minimum value at the physical point.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"34 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/9zzh-d65x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Consistent chiral limit has been investigated in the curvature mass parametrized quark-meson (QM) model with the quark one-loop vacuum term (QMVT) employing the infrared regularized chiral perturbation theory predicted scaling of the pion, kaon decay constants fπ, fK and Mη2=mη2+mη2 when the π and K meson masses are reduced as one moves away from the physical point in the Columbia plot. Comparing the QMVT model Columbia plots with the corresponding Columbia plots computed in the very recent work of Tiwari [], using the on-shell renormalized QM (RQM) model and the earlier work of Resch [] using functional renormalization group techniques in the extended mean field approximation of the QM (e-MFA:QM-FRG) model, it has been estimated how the first, second, and crossover chiral transition regions in the mπmK(mudms) and the μmK(μms) planes get modified by different methods of implementing the quark one-loop vacuum fluctuations in the QM model. Since both the e-MFA:QM-FRG and the QMVT model use curvature meson masses to fix the parameters and the dimensional regularization of vacuum divergences are incorporated equivalently, the differences in their results can be attributed to different methods of approaching the chiral limit. The first order regions in the QMVT model while being much smaller than those in the RQM model have similar features but moderately smaller area than those in the e-MFA:QM-FRG study. In going to the chiral limit, the vacuum mass mσ=530 MeV that is taken at the physical point does not change in the QMVT model whereas it decreases significantly in the e-MFA:QM-FRG study. Being different from the pole mass mσ=530 MeV, the RQM model vacuum curvature mass mσ,c increases toward the chiral limit from its minimum value at the physical point.
用ChPT研究曲率质量与壳上重整化夸克-介子模型的手性极限比较
在曲率质量参数化夸克-介子(QM)模型中研究了一致的手性极限,夸克单环真空项(QMVT)采用红外正则手性微扰理论预测了π和K介子的衰变常数fπ, fK和mη2 =mη2+mη ' 2,当π和K介子的质量随着远离哥伦比亚图中的物理点而减小。将QMVT模型哥伦比亚图与Tiwari[]最近的工作中计算的相应哥伦比亚图进行比较,使用壳上重整化QM (RQM)模型和Resch[]在QM (e-MFA:QM- frg)模型的扩展平均场近似中使用功能重整化群技术,可以估计出第一,第二,在QM模型中,通过不同的方法实现夸克单环真空涨落,得到了mπ−mK(mud−ms)和μ−mK(μ−ms)平面上的交叉手性跃迁区。由于e-MFA:QM-FRG和QMVT模型都使用曲率介子质量固定参数,并且真空散度的维度正则化被等效地纳入,因此它们的结果差异可归因于接近手性极限的不同方法。QMVT模型的一阶区域虽然比RQM模型小得多,但与e-MFA:QM-FRG研究的一阶区域具有相似的特征,但面积略小。在达到手性极限时,在QMVT模型中物理点处的真空质量mσ=530 MeV没有变化,而在e-MFA:QM-FRG研究中则明显减小。与磁极质量mσ=530 MeV不同,RQM模型的真空曲率质量mσ,c从物理点的最小值向手性极限增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信