Unlocking High‐Concentration PET Upcycling via Site‐Decoupled Copper Catalysis

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chuan Gang, Jingqing Tian, Bing Ma, Chen Zhao
{"title":"Unlocking High‐Concentration PET Upcycling via Site‐Decoupled Copper Catalysis","authors":"Chuan Gang, Jingqing Tian, Bing Ma, Chen Zhao","doi":"10.1002/anie.202516357","DOIUrl":null,"url":null,"abstract":"Upcycling polyethylene terephthalate (PET) plastic waste on islands into valuable fuels represents a promising strategy for carbon resource utilization and circular economy development; however, this approach faces critical challenges, including low processing concentrations (currently <jats:italic>C</jats:italic><jats:sub>PET</jats:sub> &lt; 1.5 wt%) and fast catalyst deactivation under high‐temperature redox conditions. Herein, we report a site‐decoupled copper catalyst (Cu/MgAlGaZnO<jats:sub>x</jats:sub>) that unlocks quantitative conversion of PET to <jats:italic>p</jats:italic>‐xylene (PX) at unprecedented concentrations (15.1 wt%), achieving a record PX formation rate of 10.1 −7.8‐fold higher than prior CuNa/SiO<jats:sub>2</jats:sub> systems. In situ spectroscopy reveals that ethylene glycol (EG) fragment oxidation during depolymerization reduces Cu<jats:sup>+</jats:sup> species in conventional catalysts, triggering rapid deactivation. By contrast, oxygen vacancies (O<jats:sub>v</jats:sub>) in the GaZnO<jats:sub>x</jats:sub> support adsorb methanolysis intermediates, spatially segregating depolymerization (GaZnO<jats:sub>x</jats:sub>) from hydrodeoxygenation (Cu/MgAlO<jats:sub>x</jats:sub>). This decoupling stabilizes active Cu⁺/Cu<jats:sup>0</jats:sup>─O<jats:sub>v</jats:sub> sites, enabling sustained operation at high PET concentrations. Our work establishes site decoupling as a general strategy for stabilizing redox catalysts in polymer upcycling under demanding environments.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202516357","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Upcycling polyethylene terephthalate (PET) plastic waste on islands into valuable fuels represents a promising strategy for carbon resource utilization and circular economy development; however, this approach faces critical challenges, including low processing concentrations (currently CPET < 1.5 wt%) and fast catalyst deactivation under high‐temperature redox conditions. Herein, we report a site‐decoupled copper catalyst (Cu/MgAlGaZnOx) that unlocks quantitative conversion of PET to p‐xylene (PX) at unprecedented concentrations (15.1 wt%), achieving a record PX formation rate of 10.1 −7.8‐fold higher than prior CuNa/SiO2 systems. In situ spectroscopy reveals that ethylene glycol (EG) fragment oxidation during depolymerization reduces Cu+ species in conventional catalysts, triggering rapid deactivation. By contrast, oxygen vacancies (Ov) in the GaZnOx support adsorb methanolysis intermediates, spatially segregating depolymerization (GaZnOx) from hydrodeoxygenation (Cu/MgAlOx). This decoupling stabilizes active Cu⁺/Cu0─Ov sites, enabling sustained operation at high PET concentrations. Our work establishes site decoupling as a general strategy for stabilizing redox catalysts in polymer upcycling under demanding environments.
通过位点解耦铜催化解锁高浓度PET升级回收
将岛屿上的聚对苯二甲酸乙二醇酯(PET)塑料垃圾升级为有价值的燃料是碳资源利用和循环经济发展的一个有前景的战略;然而,这种方法面临着严峻的挑战,包括低处理浓度(目前为CPET <; 1.5 wt%)和高温氧化还原条件下催化剂的快速失活。在此,我们报告了一种位点解耦铜催化剂(Cu/MgAlGaZnOx),该催化剂以前所未有的浓度(15.1 wt%)将PET定量转化为对二甲苯(PX),实现了创纪录的PX形成率,比之前的CuNa/SiO2体系高10.1 - 7.8倍。原位光谱分析表明,在解聚过程中乙二醇(EG)片段氧化减少了常规催化剂中的Cu+物种,引发了快速失活。相比之下,GaZnOx中的氧空位(Ov)支持甲醇分解中间体的吸附,在空间上分离解聚(GaZnOx)和加氢脱氧(Cu/MgAlOx)。这种去耦稳定了活性Cu + /Cu0─Ov位点,使其能够在高浓度PET下持续运行。我们的工作建立了在苛刻环境下稳定聚合物升级回收中的氧化还原催化剂的一般策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信