A simple quantum simulation algorithm with near-optimal precision scaling

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Amir Kalev and Itay Hen
{"title":"A simple quantum simulation algorithm with near-optimal precision scaling","authors":"Amir Kalev and Itay Hen","doi":"10.1088/2058-9565/ae075a","DOIUrl":null,"url":null,"abstract":"Quantum simulation is a foundational application for quantum computers, projected to offer insights into complex quantum systems beyond the reach of classical computation. However, with the exception of Trotter-based methods, which suffer from suboptimal scaling with respect to simulation precision, existing simulation techniques are, for the most part, too intricate to implement on early fault-tolerant quantum hardware. We propose a quantum Hamiltonian dynamics simulation algorithm that aims to be both straightforward to implement and, at the same time, have near-optimal scaling in simulation precision.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"18 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ae075a","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum simulation is a foundational application for quantum computers, projected to offer insights into complex quantum systems beyond the reach of classical computation. However, with the exception of Trotter-based methods, which suffer from suboptimal scaling with respect to simulation precision, existing simulation techniques are, for the most part, too intricate to implement on early fault-tolerant quantum hardware. We propose a quantum Hamiltonian dynamics simulation algorithm that aims to be both straightforward to implement and, at the same time, have near-optimal scaling in simulation precision.
一个简单的量子模拟算法,具有接近最优的精度缩放
量子模拟是量子计算机的基础应用,旨在提供超越经典计算范围的复杂量子系统的见解。然而,除了基于trotter的方法在模拟精度方面存在次优缩放问题外,现有的模拟技术在很大程度上过于复杂,无法在早期的容错量子硬件上实现。我们提出了一种量子哈密顿动力学仿真算法,其目的是既简单易行,同时在仿真精度上具有接近最佳的缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信