Helical neural implants for intracerebral drug delivery.

IF 3.8
Batoul Khlaifat, Mahmoud Elbeh, Shreya Manjrekar, Seung-Jean Kang, Yusheng Zhang, Parima Phowarasoontorn, Sadaf Usmani, Abdel-Hameed Dabbour, Heba T Naser, Hanan Mohammed, Minsoo Kim, Khalil B Ramadi
{"title":"Helical neural implants for intracerebral drug delivery.","authors":"Batoul Khlaifat, Mahmoud Elbeh, Shreya Manjrekar, Seung-Jean Kang, Yusheng Zhang, Parima Phowarasoontorn, Sadaf Usmani, Abdel-Hameed Dabbour, Heba T Naser, Hanan Mohammed, Minsoo Kim, Khalil B Ramadi","doi":"10.1088/1741-2552/ae0523","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Neurological disorders often arise from specific regions of dysfunction in the brain. One approach to target these pathologic regions is through chemical delivery using intracerebral implants. Previous works have designed implants that are small and flexible, minimizing the mechanical mismatch between inorganic implants and soft organic brain tissue. Most of these implants are simple cylindrical catheters with inflow and outflow ports at either end of the cylinder. This limits the region and volume of tissue that can be dosed. We sought to develop novel catheter designs that permit targeting of larger volumes of brain tissue while maintaining minimal footprint to minimize gliosis.<i>Approach.</i>We present the design, fabrication, and testing of a novel helical-shaped microfluidic catheter we term SPIRAL (Strategic Precision Infusion for Regional Administration of Liquid). SPIRAL leverages rational fluidic design of multiple fluid outflow ports to vary infused fluid spatial distribution across brain regions. We used<i>in silico, in vitro, and in vivo</i>models to test the fluid dynamic functionality and chronic viability of SPIRAL.<i>Results.</i>Our computational fluid dynamics (CFDs) models illustrate how SPIRAL can be configured to permit simultaneous dosing through multiple outflow ports yielding a variable fluid distribution compared to a straight catheter. We show how CFD<i>in silico</i>models can be used to optimize dimensions of channel openings across SPIRAL, to achieve uniform flow through channels and validate these results<i>in vitro</i>. We show how chronically implanted SPIRAL catheters do not increase gliosis compared to standard straight catheters of similar dimensions or materials.<i>Significance.</i>Our helical intracerebral drug delivery catheter facilitates fluid localization while maintaining minimal invasiveness. SPIRAL could enable multiregional brain access and improve therapeutic efforts in the treatment of neurological diseases.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":"22 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ae0523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Neurological disorders often arise from specific regions of dysfunction in the brain. One approach to target these pathologic regions is through chemical delivery using intracerebral implants. Previous works have designed implants that are small and flexible, minimizing the mechanical mismatch between inorganic implants and soft organic brain tissue. Most of these implants are simple cylindrical catheters with inflow and outflow ports at either end of the cylinder. This limits the region and volume of tissue that can be dosed. We sought to develop novel catheter designs that permit targeting of larger volumes of brain tissue while maintaining minimal footprint to minimize gliosis.Approach.We present the design, fabrication, and testing of a novel helical-shaped microfluidic catheter we term SPIRAL (Strategic Precision Infusion for Regional Administration of Liquid). SPIRAL leverages rational fluidic design of multiple fluid outflow ports to vary infused fluid spatial distribution across brain regions. We usedin silico, in vitro, and in vivomodels to test the fluid dynamic functionality and chronic viability of SPIRAL.Results.Our computational fluid dynamics (CFDs) models illustrate how SPIRAL can be configured to permit simultaneous dosing through multiple outflow ports yielding a variable fluid distribution compared to a straight catheter. We show how CFDin silicomodels can be used to optimize dimensions of channel openings across SPIRAL, to achieve uniform flow through channels and validate these resultsin vitro. We show how chronically implanted SPIRAL catheters do not increase gliosis compared to standard straight catheters of similar dimensions or materials.Significance.Our helical intracerebral drug delivery catheter facilitates fluid localization while maintaining minimal invasiveness. SPIRAL could enable multiregional brain access and improve therapeutic efforts in the treatment of neurological diseases.

用于脑内给药的螺旋神经植入物。
目标。神经系统疾病通常是由大脑特定区域的功能障碍引起的。一种针对这些病理区域的方法是使用脑内植入物进行化学输送。以前的工作设计了小而灵活的植入物,最大限度地减少了无机植入物和柔软有机脑组织之间的机械不匹配。这些植入物大多数是简单的圆柱形导管,在圆柱体的两端有流入和流出口。这限制了可以给药的组织的区域和体积。我们试图开发一种新的导管设计,使其能够靶向更大体积的脑组织,同时保持最小的占地面积,以最大限度地减少胶质形成。我们提出了一种新型螺旋形微流体导管的设计、制造和测试,我们称之为螺旋(区域液体管理战略精密输液)。螺旋利用多个流体流出口的合理流体设计来改变注入流体在大脑区域的空间分布。结果:我们的计算流体动力学(cfd)模型说明了如何配置螺旋,以允许通过多个流出口同时给药,与直导管相比,产生可变的流体分布。我们展示了CFDin硅模型如何用于优化螺旋通道开口的尺寸,以实现通过通道的均匀流动,并在体外验证这些结果。研究表明,与相同尺寸或材料的标准直管相比,长期植入螺旋导管不会增加神经胶质瘤的发生。意义:我们的螺旋脑内给药导管有助于液体定位,同时保持最小的侵入性。螺旋可以实现多区域大脑访问,并改善神经系统疾病的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信