Katie A Johnson, Clare Cooper, Cécile Philippe, Ryan J Catchpole, Shakela Mitchell, Michael P Terns
{"title":"A Phage Variable Region Encodes Anti-CRISPR Proteins Inhibiting All <i>Streptococcus thermophilus</i> CRISPR Immune Systems.","authors":"Katie A Johnson, Clare Cooper, Cécile Philippe, Ryan J Catchpole, Shakela Mitchell, Michael P Terns","doi":"10.1177/25731599251369720","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria and archaea utilize CRISPR-Cas systems to defend against invading mobile genetic elements (MGEs) such as phages and plasmids. In turn, MGEs have evolved anti-CRISPR (Acr) proteins to counteract these defenses. While several type II-A Acrs have been identified in <i>Streptococcus thermophilus</i> (<i>Sth</i>) phages, a more comprehensive understanding of Acr diversity in <i>Sth</i> phages has yet to be explored. Guided by the genomic context of known Acrs, we systematically screened uncharacterized phage proteins and identified several novel Acrs that inhibit type I-E, type II-A or type III-A <i>Sth</i> CRISPR-Cas systems. These <i>acr</i> genes are clustered within a variable phage genomic region, indicating a hotspot for anti-defense activity. We also identified neighboring proteins with predicted enzymatic or structural domains that may modulate phage-host interactions through Acr-independent mechanisms. Together, our findings expand the known repertoire of <i>Sth</i> Acrs and highlight the phage variable region as a key reservoir of immune-modulating factors.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/25731599251369720","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria and archaea utilize CRISPR-Cas systems to defend against invading mobile genetic elements (MGEs) such as phages and plasmids. In turn, MGEs have evolved anti-CRISPR (Acr) proteins to counteract these defenses. While several type II-A Acrs have been identified in Streptococcus thermophilus (Sth) phages, a more comprehensive understanding of Acr diversity in Sth phages has yet to be explored. Guided by the genomic context of known Acrs, we systematically screened uncharacterized phage proteins and identified several novel Acrs that inhibit type I-E, type II-A or type III-A Sth CRISPR-Cas systems. These acr genes are clustered within a variable phage genomic region, indicating a hotspot for anti-defense activity. We also identified neighboring proteins with predicted enzymatic or structural domains that may modulate phage-host interactions through Acr-independent mechanisms. Together, our findings expand the known repertoire of Sth Acrs and highlight the phage variable region as a key reservoir of immune-modulating factors.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.