Quantum Monte Carlo Approaches to Na Intercalation on Bilayer Graphene.

IF 4.3 Q2 CHEMISTRY, PHYSICAL
ACS Physical Chemistry Au Pub Date : 2025-06-25 eCollection Date: 2025-09-24 DOI:10.1021/acsphyschemau.5c00025
Hyeondeok Shin, Anouar Benali, Christopher S Johnson
{"title":"Quantum Monte Carlo Approaches to Na Intercalation on Bilayer Graphene.","authors":"Hyeondeok Shin, Anouar Benali, Christopher S Johnson","doi":"10.1021/acsphyschemau.5c00025","DOIUrl":null,"url":null,"abstract":"<p><p>We have performed Quantum Monte Carlo (QMC) simulations on Na-intercalated bilayer graphene to study the evolution of electronic and optical properties upon Na intercalation into hard carbon layers. The objective was to model the optimal configuration of Na intercalation into a hard carbon matrix containing graphene regions. Our study showed that Na intercalation can be energetically stabilized at large interlayer distances (over 6 Å) in both AA- and AB-stacked bilayer graphene. In the QMC results, we found a significant band gap opening at the equilibrium interlayer distance of Na-intercalated bilayer graphene, while corresponding density functional theory (DFT) results showed no gap. This difference between DFT and QMC results indicates that the gap opening induced by Na intercalation into a hard carbon is underestimated within the DFT framework. In addition, a zigzag configuration of Na atoms was found to be energetically stable at interlayer distances up to 10 Å, leading us to predict the existence of a local minimum of Na intercalation at large interlayer distance. These computation and modeling results can provide guidance on how to synthesize and optimize hard carbon with bilayer graphene regions that permit a zigzag intercalation configuration that will maximize and stabilize sodium hosting.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 5","pages":"478-489"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.5c00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/24 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We have performed Quantum Monte Carlo (QMC) simulations on Na-intercalated bilayer graphene to study the evolution of electronic and optical properties upon Na intercalation into hard carbon layers. The objective was to model the optimal configuration of Na intercalation into a hard carbon matrix containing graphene regions. Our study showed that Na intercalation can be energetically stabilized at large interlayer distances (over 6 Å) in both AA- and AB-stacked bilayer graphene. In the QMC results, we found a significant band gap opening at the equilibrium interlayer distance of Na-intercalated bilayer graphene, while corresponding density functional theory (DFT) results showed no gap. This difference between DFT and QMC results indicates that the gap opening induced by Na intercalation into a hard carbon is underestimated within the DFT framework. In addition, a zigzag configuration of Na atoms was found to be energetically stable at interlayer distances up to 10 Å, leading us to predict the existence of a local minimum of Na intercalation at large interlayer distance. These computation and modeling results can provide guidance on how to synthesize and optimize hard carbon with bilayer graphene regions that permit a zigzag intercalation configuration that will maximize and stabilize sodium hosting.

双层石墨烯上Na嵌入的量子蒙特卡罗方法。
我们对Na嵌入双层石墨烯进行了量子蒙特卡罗(QMC)模拟,以研究Na嵌入硬碳层时电子和光学性质的演变。目的是模拟钠嵌入到含有石墨烯区域的硬碳基体中的最佳配置。我们的研究表明,在AA-和ab -堆叠的双层石墨烯中,Na嵌入可以在较大的层间距离(超过6 Å)上能量稳定。在QMC结果中,我们发现在na嵌入双层石墨烯的平衡层间距离处有明显的带隙开放,而相应的密度泛函理论(DFT)结果没有显示带隙。DFT和QMC结果之间的差异表明,在DFT框架内,Na嵌入硬碳引起的间隙打开被低估了。此外,发现Na原子的锯齿形结构在层间距离达到10 Å时能量稳定,这使我们预测在大层间距离处存在Na嵌入的局部最小值。这些计算和建模结果可以为如何合成和优化具有双层石墨烯区域的硬碳提供指导,这些双层石墨烯区域允许锯齿形嵌入配置,从而最大化和稳定钠承载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信