Pedro A S Randi, Paulo Limão-Vieira, Márcio H F Bettega
{"title":"Probing the Rydbergization of Water through the Stabilization Method.","authors":"Pedro A S Randi, Paulo Limão-Vieira, Márcio H F Bettega","doi":"10.1021/acsphyschemau.5c00058","DOIUrl":null,"url":null,"abstract":"<p><p>A molecular orbital or electronically excited state may change its character, from Rydberg or mixed valence-Rydberg to valence, as dissociation progresses. This geometrical dependency of the electronically excited states is known as Rydbergization. Recently, we proposed a new approach to characterizing the nature of electronically excited states based on the stabilization method [Randi P. A S, et al. J. Phys. Chem. A, 2025, 129, 5820-5828.]. Here, we demonstrate that the stabilization method can effectively describe the Rydbergization phenomenon in the low-lying excited states of water. To this end, we analyze both the symmetric and asymmetric dissociation pathways, comparing our findings to previously reported results whenever possible. In addition to reproducing established data, we present new insights into the symmetric dissociation of states with <i>B</i> <sub>2</sub> symmetry, as well as previously unexplored behavior along the asymmetric dissociation pathway. We conclude also that Rydbergization is pathway-dependent and that conclusions drawn from one geometric distortion cannot be uncritically generalized to others.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 5","pages":"569-578"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.5c00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/24 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A molecular orbital or electronically excited state may change its character, from Rydberg or mixed valence-Rydberg to valence, as dissociation progresses. This geometrical dependency of the electronically excited states is known as Rydbergization. Recently, we proposed a new approach to characterizing the nature of electronically excited states based on the stabilization method [Randi P. A S, et al. J. Phys. Chem. A, 2025, 129, 5820-5828.]. Here, we demonstrate that the stabilization method can effectively describe the Rydbergization phenomenon in the low-lying excited states of water. To this end, we analyze both the symmetric and asymmetric dissociation pathways, comparing our findings to previously reported results whenever possible. In addition to reproducing established data, we present new insights into the symmetric dissociation of states with B2 symmetry, as well as previously unexplored behavior along the asymmetric dissociation pathway. We conclude also that Rydbergization is pathway-dependent and that conclusions drawn from one geometric distortion cannot be uncritically generalized to others.
随着解离的进行,分子轨道或电子激发态可以改变其性质,从里德堡或混合价-里德堡变为价态。这种电子激发态的几何依赖性被称为里德伯尔基化。最近,我们提出了一种基于稳定化方法表征电子激发态性质的新方法[Randi P. a . S, et al.]。期刊。化学。[j].植物学报,2015,29(5):582 -582。在此,我们证明了稳定化方法可以有效地描述水的低洼激发态的雷氏化现象。为此,我们分析了对称和非对称解离途径,并尽可能将我们的发现与先前报道的结果进行比较。除了再现已建立的数据外,我们还提出了对具有b2对称性的态的对称解离的新见解,以及以前未探索的沿着不对称解离途径的行为。我们还得出结论,Rydbergization是路径依赖的,从一个几何扭曲得出的结论不能不加批判地推广到其他。
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis