Artificial intelligence and systems biology analysis in stem cell research and therapeutics development.

IF 4.9 2区 医学 Q1 CELL & TISSUE ENGINEERING
Thayna Silva-Sousa, Júlia Nakanishi Usuda, Nada Al-Arawe, Irene Hinterseher, Rusan Catar, Christian Luecht, Pedro Vallecillo Garcia, Katarina Riesner, Alexander Hackel, Lena F Schimke, Haroldo Dutra Dias, Igor Salerno Filgueiras, Helder I Nakaya, Niels Olsen Saraiva Camara, Stefan Fischer, Gabriela Riemekasten, Olle Ringdén, Olaf Penack, Tobias Winkler, Georg Duda, Dennyson Leandro M Fonseca, Otávio Cabral-Marques, Guido Moll
{"title":"Artificial intelligence and systems biology analysis in stem cell research and therapeutics development.","authors":"Thayna Silva-Sousa, Júlia Nakanishi Usuda, Nada Al-Arawe, Irene Hinterseher, Rusan Catar, Christian Luecht, Pedro Vallecillo Garcia, Katarina Riesner, Alexander Hackel, Lena F Schimke, Haroldo Dutra Dias, Igor Salerno Filgueiras, Helder I Nakaya, Niels Olsen Saraiva Camara, Stefan Fischer, Gabriela Riemekasten, Olle Ringdén, Olaf Penack, Tobias Winkler, Georg Duda, Dennyson Leandro M Fonseca, Otávio Cabral-Marques, Guido Moll","doi":"10.1093/stcltm/szaf037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stem cell research has rapidly advanced during the past decades, but the translation into approved clinical products is still lagging behind. Multiple barriers to effective clinical translation exist. We hypothesize that an ineffective use of the existing wealth of data from both product development and clinical trials is a crucial barrier that hampers effective clinical implementation of stem cell therapies.</p><p><strong>Methods and results: </strong>Here, we summarize the contribution of systems biology (SysBio) and artificial intelligence (AI) in stem cell research and therapy development, to better understand and overcome these barriers to effective clinical translation. Advancements in cell product profiling technology, clinical trial design, and adjunct clinical monitoring, offer new opportunities for a more integrated understanding of both, product and patient performance. Synergy of SysBioAI analysis is boosting a more rapid, integrated, and informative analysis of large‑scale multi‑omics data sets of patient and clinical trial outcomes, thus enabling the \"Iterative Circle of Refined Clinical Translation\". This SysBioAI‑supported concept can assist more effective development and clinical use of stem cell therapeutics through iterative adaptation cycles. This includes product‑ and patient‑centered clinical safety and efficacy/potency evaluation through paired identification of suitable biomarkers of clinical response.</p><p><strong>Conclusion: </strong>Integrated SysBioAI-use is a powerful tool to optimize the design and outcomes of clinical trials by identifying patient-specific responses, contributing to enhanced treatment safety and efficacy, and to spur new patient-centric and adaptable next-generation deep-medicine approaches.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szaf037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Stem cell research has rapidly advanced during the past decades, but the translation into approved clinical products is still lagging behind. Multiple barriers to effective clinical translation exist. We hypothesize that an ineffective use of the existing wealth of data from both product development and clinical trials is a crucial barrier that hampers effective clinical implementation of stem cell therapies.

Methods and results: Here, we summarize the contribution of systems biology (SysBio) and artificial intelligence (AI) in stem cell research and therapy development, to better understand and overcome these barriers to effective clinical translation. Advancements in cell product profiling technology, clinical trial design, and adjunct clinical monitoring, offer new opportunities for a more integrated understanding of both, product and patient performance. Synergy of SysBioAI analysis is boosting a more rapid, integrated, and informative analysis of large‑scale multi‑omics data sets of patient and clinical trial outcomes, thus enabling the "Iterative Circle of Refined Clinical Translation". This SysBioAI‑supported concept can assist more effective development and clinical use of stem cell therapeutics through iterative adaptation cycles. This includes product‑ and patient‑centered clinical safety and efficacy/potency evaluation through paired identification of suitable biomarkers of clinical response.

Conclusion: Integrated SysBioAI-use is a powerful tool to optimize the design and outcomes of clinical trials by identifying patient-specific responses, contributing to enhanced treatment safety and efficacy, and to spur new patient-centric and adaptable next-generation deep-medicine approaches.

干细胞研究和治疗发展中的人工智能和系统生物学分析。
背景:干细胞研究在过去的几十年里迅速发展,但转化为批准的临床产品仍然落后。有效的临床翻译存在多重障碍。我们假设,对产品开发和临床试验中现有丰富数据的无效利用是阻碍干细胞治疗有效临床实施的关键障碍。方法和结果:在这里,我们总结了系统生物学(SysBio)和人工智能(AI)在干细胞研究和治疗开发中的贡献,以更好地理解和克服这些障碍,实现有效的临床转化。细胞产品分析技术、临床试验设计和辅助临床监测的进步,为更全面地了解产品和患者的表现提供了新的机会。SysBioAI分析的协同作用促进了对患者和临床试验结果的大规模多组学数据集的更快速,集成和信息丰富的分析,从而实现了“精细临床翻译的迭代循环”。这个SysBioAI支持的概念可以通过迭代适应周期帮助更有效地开发和临床使用干细胞疗法。这包括通过配对鉴定合适的临床反应生物标志物,以产品和患者为中心的临床安全性和疗效/效力评估。结论:集成的sysbioai使用是一个强大的工具,可以通过识别患者特异性反应来优化临床试验的设计和结果,有助于提高治疗的安全性和有效性,并促进以患者为中心和适应性强的新一代深度医学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信