Hui-Ying Li , Meng-Yu Bao , Hao-Ming Xiong , Can-Can Wang , Li-Ping Bai , Wei Zhang , Cheng-Yu Chen , Zhi-Hong Jiang , Guo-Yuan Zhu
{"title":"Suspensaditerpenes A–Q, anti-inflammatory labdane and nor-labdane diterpenoids from the seeds of Forsythia suspensa","authors":"Hui-Ying Li , Meng-Yu Bao , Hao-Ming Xiong , Can-Can Wang , Li-Ping Bai , Wei Zhang , Cheng-Yu Chen , Zhi-Hong Jiang , Guo-Yuan Zhu","doi":"10.1016/j.phytochem.2025.114688","DOIUrl":null,"url":null,"abstract":"<div><div>Phytochemical investigation of the seeds of <em>Forsythia suspensa</em> resulted in the isolation and characterization of 17 undescribed labdane and nor-labdane diterpenoids, named suspensaditerpenes A−Q (<strong>1</strong>−<strong>17</strong>), along with 13 known ones (<strong>18</strong>−<strong>30</strong>). Their structures were elucidated by a combination of NMR, HR-MS, and X-ray diffraction analyses. Structurally, <strong>5</strong>, <strong>10</strong>, and <strong>13</strong> are labdane diterpenoids featuring a lactone ring at the side chain, marking their first description in <em>F. suspensa</em>. Compounds <strong>4</strong>, <strong>14</strong>, <strong>15</strong>, and <strong>25</strong> are 14,15-dinor-diterpenoids, among which <strong>14</strong> and <strong>15</strong> have a rare 6/6/5 ring skeleton. Furthermore, all known compounds were isolated from <em>F. suspensa</em> for the first time. The <em>in vitro</em> anti-inflammatory activities assay showed that <strong>5</strong>, <strong>8</strong>, <strong>13</strong>, and <strong>14</strong> significantly inhibited the LPS-induced NO production at 20 μM in LPS-induced RAW264.7 cells, while the remaining 24 compounds demonstrated slight NO inhibitory activity. Further studies showed that <strong>5</strong> suppressed the LPS-induced expression of iNOS, p-p65, and NLRP3 proteins as well as NF-κB nuclear translocation in RAW264.7 cells.</div></div>","PeriodicalId":20170,"journal":{"name":"Phytochemistry","volume":"242 ","pages":"Article 114688"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031942225003115","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phytochemical investigation of the seeds of Forsythia suspensa resulted in the isolation and characterization of 17 undescribed labdane and nor-labdane diterpenoids, named suspensaditerpenes A−Q (1−17), along with 13 known ones (18−30). Their structures were elucidated by a combination of NMR, HR-MS, and X-ray diffraction analyses. Structurally, 5, 10, and 13 are labdane diterpenoids featuring a lactone ring at the side chain, marking their first description in F. suspensa. Compounds 4, 14, 15, and 25 are 14,15-dinor-diterpenoids, among which 14 and 15 have a rare 6/6/5 ring skeleton. Furthermore, all known compounds were isolated from F. suspensa for the first time. The in vitro anti-inflammatory activities assay showed that 5, 8, 13, and 14 significantly inhibited the LPS-induced NO production at 20 μM in LPS-induced RAW264.7 cells, while the remaining 24 compounds demonstrated slight NO inhibitory activity. Further studies showed that 5 suppressed the LPS-induced expression of iNOS, p-p65, and NLRP3 proteins as well as NF-κB nuclear translocation in RAW264.7 cells.
期刊介绍:
Phytochemistry is a leading international journal publishing studies of plant chemistry, biochemistry, molecular biology and genetics, structure and bioactivities of phytochemicals, including ''-omics'' and bioinformatics/computational biology approaches. Phytochemistry is a primary source for papers dealing with phytochemicals, especially reports concerning their biosynthesis, regulation, and biological properties both in planta and as bioactive principles. Articles are published online as soon as possible as Articles-in-Press and in 12 volumes per year. Occasional topic-focussed special issues are published composed of papers from invited authors.