Nitrogen-doped Cu4O3 thin films as high-performance counter electrodes for quantum dot-sensitized solar cells.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pham Minh Khang, Le Thanh Duy, Huu Phuc Dang, Tran Le
{"title":"Nitrogen-doped Cu<sub>4</sub>O<sub>3</sub> thin films as high-performance counter electrodes for quantum dot-sensitized solar cells.","authors":"Pham Minh Khang, Le Thanh Duy, Huu Phuc Dang, Tran Le","doi":"10.1039/d5na00664c","DOIUrl":null,"url":null,"abstract":"<p><p>P-type metal oxide semiconductors are critical components in the development of next-generation optoelectronic and photovoltaic devices. While n-type materials such as SnO<sub>2</sub>, ZnO, and ITO are well-established, the lack of stable, high-performance p-type transparent oxides with suitable bandgaps remains a key limitation. Among copper oxides, Cu<sub>4</sub>O<sub>3</sub>-a mixed-valence oxide-offers promising electronic and optical tunability, yet has been underexplored for device integration. In this work, nitrogen-doped Cu<sub>4</sub>O<sub>3</sub> thin films were synthesized <i>via</i> DC magnetron sputtering under an (Ar + 10% O<sub>2</sub>)/N<sub>2</sub> atmosphere. The incorporation of nitrogen effectively modulated the electronic structure, enhanced chemical stability, and improved electrical transport properties. The optimal film, denoted as Cu<sub>4</sub>O<sub>3</sub>-30 (30% N<sub>2</sub>), exhibited a direct optical bandgap of 2.18 eV, resistivity of 4.19 Ω cm, hole concentration of 3.33 × 10<sup>17</sup> cm<sup>-3</sup>, and hole mobility of 4.48 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. When implemented as a counter electrode in TiO<sub>2</sub>/CdS/CdSe:Cu/ZnS quantum dot-sensitized solar cells (QDSSCs), the device achieved a power conversion efficiency of 7.29%, exceeding the performance of its Cu<sub>2</sub>S-based counterparts. These results highlight the potential of N-doped Cu<sub>4</sub>O<sub>3</sub> as a scalable, chemically stable, and electrically efficient p-type oxide for emerging optoelectronic and photovoltaic technologies.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465014/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00664c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

P-type metal oxide semiconductors are critical components in the development of next-generation optoelectronic and photovoltaic devices. While n-type materials such as SnO2, ZnO, and ITO are well-established, the lack of stable, high-performance p-type transparent oxides with suitable bandgaps remains a key limitation. Among copper oxides, Cu4O3-a mixed-valence oxide-offers promising electronic and optical tunability, yet has been underexplored for device integration. In this work, nitrogen-doped Cu4O3 thin films were synthesized via DC magnetron sputtering under an (Ar + 10% O2)/N2 atmosphere. The incorporation of nitrogen effectively modulated the electronic structure, enhanced chemical stability, and improved electrical transport properties. The optimal film, denoted as Cu4O3-30 (30% N2), exhibited a direct optical bandgap of 2.18 eV, resistivity of 4.19 Ω cm, hole concentration of 3.33 × 1017 cm-3, and hole mobility of 4.48 cm2 V-1 s-1. When implemented as a counter electrode in TiO2/CdS/CdSe:Cu/ZnS quantum dot-sensitized solar cells (QDSSCs), the device achieved a power conversion efficiency of 7.29%, exceeding the performance of its Cu2S-based counterparts. These results highlight the potential of N-doped Cu4O3 as a scalable, chemically stable, and electrically efficient p-type oxide for emerging optoelectronic and photovoltaic technologies.

氮掺杂Cu4O3薄膜作为量子点敏化太阳能电池的高性能对电极。
p型金属氧化物半导体是下一代光电和光伏器件发展的关键部件。虽然n型材料(如SnO2、ZnO和ITO)已经很成熟,但缺乏具有合适带隙的稳定、高性能p型透明氧化物仍然是一个关键限制。在铜氧化物中,cu4o3 -一种混合价氧化物-具有很好的电子和光学可调性,但在器件集成方面尚未得到充分的探索。在(Ar + 10% O2)/N2气氛下,采用直流磁控溅射法制备了氮掺杂Cu4O3薄膜。氮的加入有效地调节了电子结构,增强了化学稳定性,改善了电输运性质。最佳薄膜Cu4O3-30 (30% N2)的直接光学带隙为2.18 eV,电阻率为4.19 Ω cm,空穴浓度为3.33 × 1017 cm-3,空穴迁移率为4.48 cm2 V-1 s-1。当作为对电极应用于TiO2/CdS/CdSe:Cu/ZnS量子点敏化太阳能电池(QDSSCs)时,该器件的功率转换效率达到7.29%,超过了基于cu2s的同类器件的性能。这些结果突出了n掺杂Cu4O3作为一种可扩展的、化学稳定的、电效率高的p型氧化物在新兴光电和光伏技术中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信