The RLI1-OsPUB77-OsBZR3 module mediates the crosstalk between phosphate starvation and brassinosteroid signaling pathways to shape rice shoot architecture.

IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kai Wang, Peng Yan, Jiangfan Guo, Wei Li, Shichen Zhou, Yijian Liu, Jiming Xu, Yu Liu, Yunrong Wu, Zhongchang Wu, Peng Wang, Chuanzao Mao, Xiaorong Mo
{"title":"The RLI1-OsPUB77-OsBZR3 module mediates the crosstalk between phosphate starvation and brassinosteroid signaling pathways to shape rice shoot architecture.","authors":"Kai Wang, Peng Yan, Jiangfan Guo, Wei Li, Shichen Zhou, Yijian Liu, Jiming Xu, Yu Liu, Yunrong Wu, Zhongchang Wu, Peng Wang, Chuanzao Mao, Xiaorong Mo","doi":"10.1016/j.molp.2025.09.019","DOIUrl":null,"url":null,"abstract":"<p><p>Plant architecture is a critical agronomic trait directly affecting planting density and crop yield. Phosphate starvation in rice (Oryza sativa) leads to a significant reduction in tiller number and a more upright leaf angle. Insensitivity to brassinosteroid (BR) signalling can lead to similar phenotypes. However, the underlying molecular mechanism of phosphate affecting plant architecture through brassinosteroid signalling remains obscure. Here, we demonstrate that the phosphate signalling-related transcription factor RLI1a releases its repression of the novel E3 ligase OsPUB77 gene under phosphate deficiency (Pi deficiency). The accumulated OsPUB77 mediates plant architecture by ubiquitinating OsBZR3 to inhibit BR signaling. Furthermore, natural variation in two single-nucleotide polymorphisms within the OsPUB77 U-box domain coding OsPUB77<sup>R530</sup> results in higher ubiquitin transfer activity than OsPUB77<sup>I530</sup> due to a stronger interaction with E2. Introducing the OsPUB77pro::OsPUB77<sup>R530I</sup> transgene into the ospub77-1 background confirmed that OsPUB77<sup>R530</sup> results in more upright leaves. Our findings reveal the RLI1a-OsPUB77-OsBZR3 module between Pi and BR that modulates plant architecture in response to Pi starvation in rice.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":24.1000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.09.019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant architecture is a critical agronomic trait directly affecting planting density and crop yield. Phosphate starvation in rice (Oryza sativa) leads to a significant reduction in tiller number and a more upright leaf angle. Insensitivity to brassinosteroid (BR) signalling can lead to similar phenotypes. However, the underlying molecular mechanism of phosphate affecting plant architecture through brassinosteroid signalling remains obscure. Here, we demonstrate that the phosphate signalling-related transcription factor RLI1a releases its repression of the novel E3 ligase OsPUB77 gene under phosphate deficiency (Pi deficiency). The accumulated OsPUB77 mediates plant architecture by ubiquitinating OsBZR3 to inhibit BR signaling. Furthermore, natural variation in two single-nucleotide polymorphisms within the OsPUB77 U-box domain coding OsPUB77R530 results in higher ubiquitin transfer activity than OsPUB77I530 due to a stronger interaction with E2. Introducing the OsPUB77pro::OsPUB77R530I transgene into the ospub77-1 background confirmed that OsPUB77R530 results in more upright leaves. Our findings reveal the RLI1a-OsPUB77-OsBZR3 module between Pi and BR that modulates plant architecture in response to Pi starvation in rice.

RLI1-OsPUB77-OsBZR3模块介导磷酸盐饥饿和油菜素内酯信号通路之间的串音,从而形成水稻茎部结构。
植物构型是直接影响种植密度和作物产量的重要农艺性状。水稻(Oryza sativa)的磷酸盐饥饿导致分蘖数显著减少和叶片垂直角度增加。对油菜素内酯(BR)信号不敏感可导致相似的表型。然而,磷酸盐通过油菜素内酯信号传导影响植物结构的潜在分子机制仍然不清楚。在这里,我们证明了磷酸盐信号相关转录因子RLI1a在磷酸盐缺乏(Pi缺乏症)下释放其对新型E3连接酶OsPUB77基因的抑制。积累的OsPUB77通过泛素化OsBZR3抑制BR信号传导介导植物结构。此外,OsPUB77 U-box结构域编码OsPUB77R530内的两个单核苷酸多态性的自然变异,由于与E2的相互作用更强,导致其泛素转移活性高于OsPUB77I530。将OsPUB77pro::OsPUB77R530I转基因引入ospub77-1背景,证实OsPUB77R530导致叶片更直立。我们的研究结果揭示了Pi和BR之间的RLI1a-OsPUB77-OsBZR3模块,该模块调节水稻对Pi饥饿的植物结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信