Hair regeneration: Mechano-activation and related therapeutic approaches.

IF 7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING
Journal of Tissue Engineering Pub Date : 2025-09-25 eCollection Date: 2025-01-01 DOI:10.1177/20417314251362398
Sun Young Nam, Shreyas Kumar Jain, Amal George Kurian, Ishik Jeong, Byung Cheol Park, Kiwon Ban, Jonathan C Knowles, Hae-Won Kim
{"title":"Hair regeneration: Mechano-activation and related therapeutic approaches.","authors":"Sun Young Nam, Shreyas Kumar Jain, Amal George Kurian, Ishik Jeong, Byung Cheol Park, Kiwon Ban, Jonathan C Knowles, Hae-Won Kim","doi":"10.1177/20417314251362398","DOIUrl":null,"url":null,"abstract":"<p><p>Hair regrowth through mechano-stimulation and other therapeutic approaches has emerged as a significant area of research in regenerative medicine. This review examines recent advances in hair regeneration strategies, with a particular focus on mechanical stimulation and complementary treatments. Studies have demonstrated that skin stretching can activate hair follicle stem cells and promote hair growth under specific conditions and durations. This process involves intricate signaling interactions, particularly through the WNT and BMP pathways, and follows a two-stage mechanism that recruits and modulates the function of macrophages. Mechanical stimulation induces the release of growth factors such as HGF and IGF-1, which activate stem cells and support hair follicle regeneration. Beyond mechanical activation, emerging hair restoration therapies, including MSC transplantation, MSC secretome therapy, and platelet-rich plasma treatments, have shown promising results. These innovative strategies overcome the limitations of conventional therapies, offering effective solutions for various types of hair loss. Additionally, here we discuss the molecular mechanisms underlying hair follicle growth and repair, the influence of external factors, and novel hair follicle formation processes, such as chimeric follicle development and follicular neogenesis. Special attention is given to the roles of dermal papilla cells and their interactions with mesenchymal cells in promoting hair regrowth. The key strategies and underlying mechanisms discussed in this review will drive future research and potential clinical applications.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251362398"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314251362398","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Hair regrowth through mechano-stimulation and other therapeutic approaches has emerged as a significant area of research in regenerative medicine. This review examines recent advances in hair regeneration strategies, with a particular focus on mechanical stimulation and complementary treatments. Studies have demonstrated that skin stretching can activate hair follicle stem cells and promote hair growth under specific conditions and durations. This process involves intricate signaling interactions, particularly through the WNT and BMP pathways, and follows a two-stage mechanism that recruits and modulates the function of macrophages. Mechanical stimulation induces the release of growth factors such as HGF and IGF-1, which activate stem cells and support hair follicle regeneration. Beyond mechanical activation, emerging hair restoration therapies, including MSC transplantation, MSC secretome therapy, and platelet-rich plasma treatments, have shown promising results. These innovative strategies overcome the limitations of conventional therapies, offering effective solutions for various types of hair loss. Additionally, here we discuss the molecular mechanisms underlying hair follicle growth and repair, the influence of external factors, and novel hair follicle formation processes, such as chimeric follicle development and follicular neogenesis. Special attention is given to the roles of dermal papilla cells and their interactions with mesenchymal cells in promoting hair regrowth. The key strategies and underlying mechanisms discussed in this review will drive future research and potential clinical applications.

头发再生:机械激活和相关的治疗方法。
通过机械刺激和其他治疗方法的毛发再生已经成为再生医学研究的一个重要领域。本文综述了毛发再生策略的最新进展,特别关注机械刺激和补充治疗。研究表明,皮肤拉伸可以激活毛囊干细胞,并在特定条件和持续时间下促进头发生长。这一过程涉及复杂的信号相互作用,特别是通过WNT和BMP通路,并遵循两个阶段的机制,招募和调节巨噬细胞的功能。机械刺激诱导生长因子如HGF和IGF-1的释放,激活干细胞并支持毛囊再生。除了机械激活外,新兴的毛发修复疗法,包括MSC移植、MSC分泌组治疗和富血小板血浆治疗,已经显示出有希望的结果。这些创新的策略克服了传统疗法的局限性,为各种类型的脱发提供了有效的解决方案。此外,我们还讨论了毛囊生长和修复的分子机制,外部因素的影响,以及新的毛囊形成过程,如嵌合毛囊发育和毛囊新生。特别关注真皮乳头细胞及其与间充质细胞的相互作用在促进毛发再生中的作用。本文讨论的关键策略和潜在机制将推动未来的研究和潜在的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Tissue Engineering
Journal of Tissue Engineering Engineering-Biomedical Engineering
CiteScore
11.60
自引率
4.90%
发文量
52
审稿时长
12 weeks
期刊介绍: The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信