L-Theanine Ameliorates Metabolic Dysregulation and Adverse Fetal Outcomes in a Mice Model of Gestational Obesity: Association with FXR/FGF15 Signaling.
IF 3.1 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"L-Theanine Ameliorates Metabolic Dysregulation and Adverse Fetal Outcomes in a Mice Model of Gestational Obesity: Association with FXR/FGF15 Signaling.","authors":"Le Huang, Hua Li, Weitao Yang, Lihui Huang, Qiuling Chen, Shengnan Li, Zhi Zou, Lijing Zhao, Zhihua Zeng","doi":"10.4014/jmb.2504.04017","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we investigated whether L-theanine (LTA) ameliorates adverse pregnancy outcomes in high-fat diet (HFD)-induced gestational obesity mice. Gestational obese mice models received HFD and fecal microbiota transplantation (FMT) from pregnant obese women, followed by LTA treatment. Gut microbiota DNA from six obese and six normal pregnant women was analyzed. Also assessed were lipid profiles, inflammatory factors, gut permeability, FXR/FGF15 expression, pup weight, and placental function. Alpha- and beta-diversity analyses showed reduced gut microbial diversity in the obese pregnant women. Postpartum hemorrhage, cholesterol, and triglycerides inversely correlated with <i>Weissella</i>, while BMI was positively associated with <i>Escherichia</i>-<i>Shigella</i>. Neonatal weight correlated positively with <i>Subdoligranulum</i> and negatively with <i>Megamonas</i>. Fasting glucose was significantly positively associated with <i>Bacteroides vulgatus</i>, whereas neonatal body weight inversely correlated with <i>Eubacterium ramulus</i>. In gestational obesity mice, LTA administration reduced weight gain, visceral/gonadal adiposity, metabolic markers (fasting glucose/insulin/cholesterol), gut barrier dysfunction (TNF-α, IL-6, IL-8, Claudin-2), and linked to FXR/FGF15 pathway alterations. Furthermore, LTA intervention suppressed MCP-1, IL-1β, F4/80 and hepatic lipid metabolism regulators (CD36, SREBP1c, SCD1, GLUT4, Cyp7a1, IRS-1), while also mitigating placental tissue junction zone abnormalities and pup weight. To sum up, LTA-mediated attenuation of adverse pregnancy outcomes associates with FXR/FGF15 pathway alterations, concomitant with restoration of metabolic homeostasis and inflammation suppression.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2504017"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2504.04017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigated whether L-theanine (LTA) ameliorates adverse pregnancy outcomes in high-fat diet (HFD)-induced gestational obesity mice. Gestational obese mice models received HFD and fecal microbiota transplantation (FMT) from pregnant obese women, followed by LTA treatment. Gut microbiota DNA from six obese and six normal pregnant women was analyzed. Also assessed were lipid profiles, inflammatory factors, gut permeability, FXR/FGF15 expression, pup weight, and placental function. Alpha- and beta-diversity analyses showed reduced gut microbial diversity in the obese pregnant women. Postpartum hemorrhage, cholesterol, and triglycerides inversely correlated with Weissella, while BMI was positively associated with Escherichia-Shigella. Neonatal weight correlated positively with Subdoligranulum and negatively with Megamonas. Fasting glucose was significantly positively associated with Bacteroides vulgatus, whereas neonatal body weight inversely correlated with Eubacterium ramulus. In gestational obesity mice, LTA administration reduced weight gain, visceral/gonadal adiposity, metabolic markers (fasting glucose/insulin/cholesterol), gut barrier dysfunction (TNF-α, IL-6, IL-8, Claudin-2), and linked to FXR/FGF15 pathway alterations. Furthermore, LTA intervention suppressed MCP-1, IL-1β, F4/80 and hepatic lipid metabolism regulators (CD36, SREBP1c, SCD1, GLUT4, Cyp7a1, IRS-1), while also mitigating placental tissue junction zone abnormalities and pup weight. To sum up, LTA-mediated attenuation of adverse pregnancy outcomes associates with FXR/FGF15 pathway alterations, concomitant with restoration of metabolic homeostasis and inflammation suppression.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.