Advanced automated classification and segmentation of leukemic cells using simulated optical scanning holography and active contour methods.

IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-09-01 Epub Date: 2025-09-27 DOI:10.1117/1.JBO.30.9.096005
Abdennacer El-Ouarzadi, Abdelaziz Essadike, Younes Achaoui, Abdenbi Bouzid
{"title":"Advanced automated classification and segmentation of leukemic cells using simulated optical scanning holography and active contour methods.","authors":"Abdennacer El-Ouarzadi, Abdelaziz Essadike, Younes Achaoui, Abdenbi Bouzid","doi":"10.1117/1.JBO.30.9.096005","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Leukemia, a complex hematological cancer, poses significant diagnostic challenges due to the heterogeneity of leukemic cells, inter-observer variability, and lack of standardized analysis methodology. Accurate and rapid cell classification is essential to improve clinical management, optimize treatment, and reduce diagnostic errors.</p><p><strong>Aim: </strong>We propose an innovative approach combining optical scanning holography (OSH) and active contour (AC) models to automate the classification and segmentation of leukemic cells with increased accuracy.</p><p><strong>Approach: </strong>OSH is used to capture the phase current of leukocytes, providing a cost-effective, noninvasive, and simplified alternative to conventional techniques. AC models are used to improve cell segmentation. Analysis of the maximum amplitude values of the phase current allows rapid and fully automated classification.</p><p><strong>Results: </strong>The proposed approach shows a significant improvement in terms of reliability, speed, and reproducibility compared with existing methods. The integration of OSH and AC enables robust segmentation and efficient classification of leukemic cells.</p><p><strong>Conclusion: </strong>This method provides a reliable, rapid, and systematic solution for the accurate diagnosis of leukemia, enabling optimized therapeutic management.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 9","pages":"096005"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.9.096005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Leukemia, a complex hematological cancer, poses significant diagnostic challenges due to the heterogeneity of leukemic cells, inter-observer variability, and lack of standardized analysis methodology. Accurate and rapid cell classification is essential to improve clinical management, optimize treatment, and reduce diagnostic errors.

Aim: We propose an innovative approach combining optical scanning holography (OSH) and active contour (AC) models to automate the classification and segmentation of leukemic cells with increased accuracy.

Approach: OSH is used to capture the phase current of leukocytes, providing a cost-effective, noninvasive, and simplified alternative to conventional techniques. AC models are used to improve cell segmentation. Analysis of the maximum amplitude values of the phase current allows rapid and fully automated classification.

Results: The proposed approach shows a significant improvement in terms of reliability, speed, and reproducibility compared with existing methods. The integration of OSH and AC enables robust segmentation and efficient classification of leukemic cells.

Conclusion: This method provides a reliable, rapid, and systematic solution for the accurate diagnosis of leukemia, enabling optimized therapeutic management.

利用模拟光学扫描全息和主动轮廓方法对白血病细胞进行高级自动分类和分割。
意义:白血病是一种复杂的血液学癌症,由于白血病细胞的异质性、观察者间的可变性和缺乏标准化的分析方法,给诊断带来了重大挑战。准确和快速的细胞分类对于改善临床管理、优化治疗和减少诊断错误至关重要。目的:提出一种结合光学扫描全息(OSH)和活动轮廓(AC)模型的创新方法,以提高白血病细胞的自动分类和分割精度。方法:OSH用于捕获白细胞的相电流,为传统技术提供了一种经济、无创和简化的替代方法。交流模型用于改进细胞分割。分析相电流的最大振幅值允许快速和全自动分类。结果:与现有方法相比,该方法在可靠性、速度和重现性方面均有显著提高。OSH和AC的整合使白血病细胞的稳健分割和有效分类成为可能。结论:该方法为白血病的准确诊断提供了可靠、快速、系统的解决方案,可优化治疗管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信