Giacomo Zuccon, Aakriti Darnal, Edoardo Longo, Sara D'Aronco, Emanuele Boselli, Patrick Orlando, Alberto Ceccon
{"title":"Molecular mechanisms of amyloid inhibition: an NMR-driven framework with polyphenols as a case study.","authors":"Giacomo Zuccon, Aakriti Darnal, Edoardo Longo, Sara D'Aronco, Emanuele Boselli, Patrick Orlando, Alberto Ceccon","doi":"10.3389/fmolb.2025.1676927","DOIUrl":null,"url":null,"abstract":"<p><p>Misfolding and aggregation of intrinsically disordered proteins into amyloid fibrils are central to neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's. Increasing evidence suggests that transient, low-populated oligomeric intermediates, rather than mature fibrils, are key cytotoxic species. Natural polyphenols have shown promise as amyloid inhibitors, though their mechanisms of action remain unclear due to the complexity of early aggregation. This perspective explores how solution-state NMR can quantitatively assess inhibitor mechanisms. Building on recent literature elucidating the aggregation mechanisms of the huntingtin exon 1 protein (htt<sup>ex1</sup>), responsible for Huntington's disease, we propose a kinetic framework that integrates early reversible oligomerization with downstream fibril formation and models the impact of small-molecule binding at distinct stages of the pathway. We show that monomer sequestration and inhibition of elongation-competent nuclei produce distinct aggregation profiles, resolvable through global fitting of NMR and kinetic data. This mechanistic insight enables classification of inhibitors by target stage-monomeric, oligomeric, or fibrillar-and demonstrates how polyphenols serve as a biologically relevant case study for applying this general NMR-driven framework to the design of small-molecule amyloid inhibitors.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1676927"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1676927","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Misfolding and aggregation of intrinsically disordered proteins into amyloid fibrils are central to neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's. Increasing evidence suggests that transient, low-populated oligomeric intermediates, rather than mature fibrils, are key cytotoxic species. Natural polyphenols have shown promise as amyloid inhibitors, though their mechanisms of action remain unclear due to the complexity of early aggregation. This perspective explores how solution-state NMR can quantitatively assess inhibitor mechanisms. Building on recent literature elucidating the aggregation mechanisms of the huntingtin exon 1 protein (httex1), responsible for Huntington's disease, we propose a kinetic framework that integrates early reversible oligomerization with downstream fibril formation and models the impact of small-molecule binding at distinct stages of the pathway. We show that monomer sequestration and inhibition of elongation-competent nuclei produce distinct aggregation profiles, resolvable through global fitting of NMR and kinetic data. This mechanistic insight enables classification of inhibitors by target stage-monomeric, oligomeric, or fibrillar-and demonstrates how polyphenols serve as a biologically relevant case study for applying this general NMR-driven framework to the design of small-molecule amyloid inhibitors.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.