The effect of barium titanate-coated titanium alloy scaffolds on bone regeneration in osteonecrosis of the femoral head models: a comprehensive analysis based on in vitro and in vivo experiments.
IF 4.8 3区 工程技术Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yu Chen, Yangfei Ou, Chunxing Xian, Hao Wu, Guoqing Pei, Wei Li, Ling Wang, Lei Shi
{"title":"The effect of barium titanate-coated titanium alloy scaffolds on bone regeneration in osteonecrosis of the femoral head models: a comprehensive analysis based on <i>in vitro</i> and <i>in vivo</i> experiments.","authors":"Yu Chen, Yangfei Ou, Chunxing Xian, Hao Wu, Guoqing Pei, Wei Li, Ling Wang, Lei Shi","doi":"10.3389/fbioe.2025.1671695","DOIUrl":null,"url":null,"abstract":"<p><p>Osteonecrosis of the femoral head (ONFH) is a common condition that greatly affects patients' quality of life, yet current treatments often have limited effectiveness. This study aimed to explore how a porous titanium alloy scaffold coated with barium titanate (BaTiO<sub>3</sub>) could promote bone regeneration in ONFH. We employed various research methods including cell culture, piezoelectric property measurements, tissue-engineered scaffold fabrication, and <i>in vitro</i> and <i>in vivo</i> biocompatibility assessments. Our results showed that macrophages had better attachment and growth on the BaTiO<sub>3</sub>-coated porous titanium alloy (PTB) scaffold than on the uncoated porous titanium alloy (PT) scaffold, with no significant differences in apoptosis rates between the two groups. Furthermore, the PTB scaffolds reduced the expression of bone resorption markers, such as Cathepsin K, TRAP, and RANK, under dynamic loading conditions. This finding indicates their potential to inhibit osteoclast differentiation. Moreover, the BaTiO<sub>3</sub> coating enhanced the mechanical properties and biocompatibility of the scaffolds, evidenced by significantly higher alkaline phosphatase activity and calcium nodule formation in MC3T3-E1 osteoblasts cultured on PTB scaffolds. These findings underscore the dual role of BaTiO<sub>3</sub> in facilitating cellular responses and modulating signaling pathways involved in bone metabolism. Our study highlights the promise of BaTiO<sub>3</sub>-coated titanium alloy scaffolds as an innovative approach to enhance bone regeneration in ONFH, paving the way for future clinical applications and the development of advanced biomaterials for bone healing.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1671695"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1671695","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteonecrosis of the femoral head (ONFH) is a common condition that greatly affects patients' quality of life, yet current treatments often have limited effectiveness. This study aimed to explore how a porous titanium alloy scaffold coated with barium titanate (BaTiO3) could promote bone regeneration in ONFH. We employed various research methods including cell culture, piezoelectric property measurements, tissue-engineered scaffold fabrication, and in vitro and in vivo biocompatibility assessments. Our results showed that macrophages had better attachment and growth on the BaTiO3-coated porous titanium alloy (PTB) scaffold than on the uncoated porous titanium alloy (PT) scaffold, with no significant differences in apoptosis rates between the two groups. Furthermore, the PTB scaffolds reduced the expression of bone resorption markers, such as Cathepsin K, TRAP, and RANK, under dynamic loading conditions. This finding indicates their potential to inhibit osteoclast differentiation. Moreover, the BaTiO3 coating enhanced the mechanical properties and biocompatibility of the scaffolds, evidenced by significantly higher alkaline phosphatase activity and calcium nodule formation in MC3T3-E1 osteoblasts cultured on PTB scaffolds. These findings underscore the dual role of BaTiO3 in facilitating cellular responses and modulating signaling pathways involved in bone metabolism. Our study highlights the promise of BaTiO3-coated titanium alloy scaffolds as an innovative approach to enhance bone regeneration in ONFH, paving the way for future clinical applications and the development of advanced biomaterials for bone healing.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.