Impacts of DIF Item Balance and Effect Size Incorporation With the Rasch Tree.

IF 2.3 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Nana Amma Berko Asamoah, Ronna C Turner, Wen-Juo Lo, Brandon L Crawford, Kristen N Jozkowski
{"title":"Impacts of DIF Item Balance and Effect Size Incorporation With the Rasch Tree.","authors":"Nana Amma Berko Asamoah, Ronna C Turner, Wen-Juo Lo, Brandon L Crawford, Kristen N Jozkowski","doi":"10.1177/00131644251370605","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring fairness in educational and psychological assessments is critical, particularly in detecting differential item functioning (DIF), where items perform differently across subgroups. The Rasch tree method, a model-based recursive partitioning approach, is an innovative and flexible DIF detection tool that does not require the pre-specification of focal and reference groups. However, research systematically examining its performance under realistic measurement conditions, such as when multiple DIF items do not consistently favor one subgroup, is limited. This study builds on prior research, evaluating the Rasch tree method's ability to detect DIF by investigating the impact of DIF balance, along with other key factors such as DIF magnitude, sample size, test length, and contamination levels. Additionally, we incorporate the Educational Testing Service effect size heuristic as a criterion to compare the DIF detection rate performance with only statistical significance. Results indicate that the Rasch tree has better true DIF detection rates under balanced DIF conditions and large DIF magnitudes. However, its accuracy declines when DIF is unbalanced and the percentage of DIF contamination increases. The use of an effect size reduces the detection of negligible DIF. Caution is recommended with smaller samples, where detection rates are the lowest, especially for larger DIF magnitudes and increased DIF contamination percentages in unbalanced conditions. The study highlights the strengths and limitations of the Rasch tree method under a variety of conditions, underscores the importance of the impact of DIF group imbalance, and provides recommendations for optimizing DIF detection in practical assessment scenarios.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644251370605"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644251370605","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring fairness in educational and psychological assessments is critical, particularly in detecting differential item functioning (DIF), where items perform differently across subgroups. The Rasch tree method, a model-based recursive partitioning approach, is an innovative and flexible DIF detection tool that does not require the pre-specification of focal and reference groups. However, research systematically examining its performance under realistic measurement conditions, such as when multiple DIF items do not consistently favor one subgroup, is limited. This study builds on prior research, evaluating the Rasch tree method's ability to detect DIF by investigating the impact of DIF balance, along with other key factors such as DIF magnitude, sample size, test length, and contamination levels. Additionally, we incorporate the Educational Testing Service effect size heuristic as a criterion to compare the DIF detection rate performance with only statistical significance. Results indicate that the Rasch tree has better true DIF detection rates under balanced DIF conditions and large DIF magnitudes. However, its accuracy declines when DIF is unbalanced and the percentage of DIF contamination increases. The use of an effect size reduces the detection of negligible DIF. Caution is recommended with smaller samples, where detection rates are the lowest, especially for larger DIF magnitudes and increased DIF contamination percentages in unbalanced conditions. The study highlights the strengths and limitations of the Rasch tree method under a variety of conditions, underscores the importance of the impact of DIF group imbalance, and provides recommendations for optimizing DIF detection in practical assessment scenarios.

Rasch树对DIF项目平衡和效应量合并的影响。
确保教育和心理评估的公平性至关重要,特别是在检测差异项目功能(DIF)方面,其中项目在子群体中的表现不同。Rasch树方法是一种基于模型的递归划分方法,是一种创新和灵活的DIF检测工具,不需要预先指定焦点和参考组。然而,在现实的测量条件下系统地检查其性能的研究是有限的,例如当多个DIF项目不始终有利于一个子组时。本研究建立在先前的研究基础上,通过调查DIF平衡的影响,以及其他关键因素(如DIF大小、样本量、测试长度和污染水平),评估Rasch树方法检测DIF的能力。此外,我们将教育测试服务效应大小启发式作为标准来比较仅具有统计显著性的DIF检出率表现。结果表明,在平衡DIF条件和大DIF值下,Rasch树具有较好的真DIF检出率。然而,当DIF不平衡和DIF污染百分比增加时,其精度下降。效应量的使用减少了对可忽略的DIF的检测。对于较小的样品,检出率最低,特别是对于较大的DIF量级和不平衡条件下增加的DIF污染百分比,建议谨慎使用。本研究强调了Rasch树方法在各种条件下的优势和局限性,强调了DIF组不平衡影响的重要性,并为在实际评估场景中优化DIF检测提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信