Kai Zhao, Ang Li, Bing Yang, Yiyang Huo, Mengrao Tang, Yi Zhang, Junsheng Wang
{"title":"Tunable Manipulation and Separation of Microtarget by Microdroplet-Based DC-DEP.","authors":"Kai Zhao, Ang Li, Bing Yang, Yiyang Huo, Mengrao Tang, Yi Zhang, Junsheng Wang","doi":"10.1002/elps.70043","DOIUrl":null,"url":null,"abstract":"<p><p>A novel DC-dielectrophoresis (DEP) method employing a tunable insulating microdroplet for the continuous sorting of microtargets is presented in this article. To induce the dielectrophoretic effect, a DC electric voltage is applied via the microdroplet through the microchannel to induce the gradient of the inhomogeneous electric field. When passing through the gap between the microdroplet and the channel where there is the strongest nonuniformity of the electric field, the microparticles experience the DEP effects, and their trajectories shift. The effects of the gap spacing and the applied voltage on the distribution of the electric field gradient and the effect of the flow rate on the particle trajectory were analyzed numerically. On the basis of theoretical analysis, a tunable microdroplet-based microfluidic chip was fabricated, and the experimental system platform centered on the tunable droplet chip was constructed. Experiments were conducted to demonstrate the sorting of 5 and 10 µm polystyrene microparticles by adjusting the joint gap distance, flow rate, and applied voltage. The experimental results were in good agreement with the numerical simulation, which proved the feasibility of using microdroplet to serve as tunable insulator for the manipulation and separation of microtargets.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.70043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel DC-dielectrophoresis (DEP) method employing a tunable insulating microdroplet for the continuous sorting of microtargets is presented in this article. To induce the dielectrophoretic effect, a DC electric voltage is applied via the microdroplet through the microchannel to induce the gradient of the inhomogeneous electric field. When passing through the gap between the microdroplet and the channel where there is the strongest nonuniformity of the electric field, the microparticles experience the DEP effects, and their trajectories shift. The effects of the gap spacing and the applied voltage on the distribution of the electric field gradient and the effect of the flow rate on the particle trajectory were analyzed numerically. On the basis of theoretical analysis, a tunable microdroplet-based microfluidic chip was fabricated, and the experimental system platform centered on the tunable droplet chip was constructed. Experiments were conducted to demonstrate the sorting of 5 and 10 µm polystyrene microparticles by adjusting the joint gap distance, flow rate, and applied voltage. The experimental results were in good agreement with the numerical simulation, which proved the feasibility of using microdroplet to serve as tunable insulator for the manipulation and separation of microtargets.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.