Zhiqi Wen, Ihtesham Ur Rehman, David Devolder, Astrid Eggerickx, Ann Van Schepdael, Erwin Adams
{"title":"Application of Ion Chromatography for Determination of Inorganic Ions and Sorbitol in Phosphate Syrup.","authors":"Zhiqi Wen, Ihtesham Ur Rehman, David Devolder, Astrid Eggerickx, Ann Van Schepdael, Erwin Adams","doi":"10.1002/elps.70044","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, ion chromatography (IC) methods were developed and validated for the determination of sodium, potassium, phosphate, and sorbitol in phosphate syrup. For the analysis of cations, an IonPac CS16 column was utilized, with a mobile phase of 50 mM methanesulfonic acid and a flow rate of 0.5 mL/min. For the analysis of phosphate and sorbitol, an IonPac AS19 column was employed, using a flow rate of 1.0 mL/min and mobile phases of 50 and 20 mM NaOH, respectively. In the validation tests, sensitivity was assessed on the basis of the signal-to-noise ratio, with the limit of detection for all analytes being below 0.001 mM. The linearity curves for all analytes exhibited determination coefficients greater than 0.999, indicating excellent linearity. The relative standard deviation (RSD%) for both inter-day and intra-day precision was not more than 1%. Accuracy, expressed as recovery (%), ranged from 98% to 101% for all ions. The validation of these methods demonstrated their reliability for the measurement of these four analytes. Furthermore, the stability of the syrup was evaluated over 6 months at room temperature (25°C). The results indicated that the phosphate syrup remained stable under these conditions, with the analyte contents staying close to 100%.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.70044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, ion chromatography (IC) methods were developed and validated for the determination of sodium, potassium, phosphate, and sorbitol in phosphate syrup. For the analysis of cations, an IonPac CS16 column was utilized, with a mobile phase of 50 mM methanesulfonic acid and a flow rate of 0.5 mL/min. For the analysis of phosphate and sorbitol, an IonPac AS19 column was employed, using a flow rate of 1.0 mL/min and mobile phases of 50 and 20 mM NaOH, respectively. In the validation tests, sensitivity was assessed on the basis of the signal-to-noise ratio, with the limit of detection for all analytes being below 0.001 mM. The linearity curves for all analytes exhibited determination coefficients greater than 0.999, indicating excellent linearity. The relative standard deviation (RSD%) for both inter-day and intra-day precision was not more than 1%. Accuracy, expressed as recovery (%), ranged from 98% to 101% for all ions. The validation of these methods demonstrated their reliability for the measurement of these four analytes. Furthermore, the stability of the syrup was evaluated over 6 months at room temperature (25°C). The results indicated that the phosphate syrup remained stable under these conditions, with the analyte contents staying close to 100%.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.