6-Hydroxygenistein Ameliorates High Altitude Brain Injury via Activating PI3K/AKT Signaling Pathway Based on Transcriptomic Analysis and Experimental Validation.
Yu Xin, Gege Wang, Chenyu Yang, Huiping Ma, Linlin Jing
{"title":"6-Hydroxygenistein Ameliorates High Altitude Brain Injury via Activating PI3K/AKT Signaling Pathway Based on Transcriptomic Analysis and Experimental Validation.","authors":"Yu Xin, Gege Wang, Chenyu Yang, Huiping Ma, Linlin Jing","doi":"10.2147/DDDT.S526988","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Our Prior research has shown that 6-hydroxygenistein (6-OHG) alleviates hypobaric hypoxia induced brain injury (HHBI) achieved by its powerful antioxidant, anti-inflammatory, and anti-apoptotic capabilities, but its mechanism still requires additional investigation. The objective of this study was to uncover the protective mechanism of 6-OHG against HHBI based on transcriptomics analysis and experimental validation.</p><p><strong>Methods: </strong>The gene levels in brain tissue obtained from previous study were accessed via the RNA-Seq technique. DESeq2 R package was used to identify the differentially expressed genes (DEGs). Functional enrichment analysis and molecular docking were investigated utilizing the clusterProfiler R package and Autodock Vina software, respectively. In experimental validation stage, histological analysis was performed using Hematoxylin-Eosin (HE) staining. Oxidative stress, inflammatory, and apoptotic indexes in brain tissue were measured using commercial kits. Western blot was applied for detecting related protein expression.</p><p><strong>Results: </strong>The RNA-Seq analysis revealed 905 differentially expressed genes (DEGs) between the Con and Mod groups, with 239 upregulated and 666 downregulated. Between the 6-OHG and Mod groups, there were 192 DEGs, including 98 upregulated and 94 downregulated genes. Go and KEGG function analyses highlighted the PI3K/AKT signaling pathway as a crucial regulatory mechanism. Western blot analysis showed that HH exposure caused a decrease in the ratios of p-PI3K/PI3K and p-AKT/AKT in the mouse brain, but this effect was reversed by 6-OHG treatment, indicating that 6-OHG activates the PI3K/AKT signaling pathway. Furthermore, LY294002, a selective PI3K inhibitor, effectively blocked this activation and also abolished the protective effects of 6-OHG on histopathological damage, as well as its antioxidant, anti-inflammatory, and anti-apoptotic activities in HHBI mice.</p><p><strong>Conclusion: </strong>6-OHG mitigates HHBI by activating the PI3K/AKT signaling pathway, suggesting its potential therapeutic application for HHBI treatment.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"8641-8656"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S526988","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Our Prior research has shown that 6-hydroxygenistein (6-OHG) alleviates hypobaric hypoxia induced brain injury (HHBI) achieved by its powerful antioxidant, anti-inflammatory, and anti-apoptotic capabilities, but its mechanism still requires additional investigation. The objective of this study was to uncover the protective mechanism of 6-OHG against HHBI based on transcriptomics analysis and experimental validation.
Methods: The gene levels in brain tissue obtained from previous study were accessed via the RNA-Seq technique. DESeq2 R package was used to identify the differentially expressed genes (DEGs). Functional enrichment analysis and molecular docking were investigated utilizing the clusterProfiler R package and Autodock Vina software, respectively. In experimental validation stage, histological analysis was performed using Hematoxylin-Eosin (HE) staining. Oxidative stress, inflammatory, and apoptotic indexes in brain tissue were measured using commercial kits. Western blot was applied for detecting related protein expression.
Results: The RNA-Seq analysis revealed 905 differentially expressed genes (DEGs) between the Con and Mod groups, with 239 upregulated and 666 downregulated. Between the 6-OHG and Mod groups, there were 192 DEGs, including 98 upregulated and 94 downregulated genes. Go and KEGG function analyses highlighted the PI3K/AKT signaling pathway as a crucial regulatory mechanism. Western blot analysis showed that HH exposure caused a decrease in the ratios of p-PI3K/PI3K and p-AKT/AKT in the mouse brain, but this effect was reversed by 6-OHG treatment, indicating that 6-OHG activates the PI3K/AKT signaling pathway. Furthermore, LY294002, a selective PI3K inhibitor, effectively blocked this activation and also abolished the protective effects of 6-OHG on histopathological damage, as well as its antioxidant, anti-inflammatory, and anti-apoptotic activities in HHBI mice.
Conclusion: 6-OHG mitigates HHBI by activating the PI3K/AKT signaling pathway, suggesting its potential therapeutic application for HHBI treatment.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.