{"title":"Lethal endotoxin (ccdB) based counterselection improved the efficiency of sequential gene editing in Escherichia coli.","authors":"Shiyao Zou, Weiqi Chen, Ying Cao, Xiaolan Liu, Jinhua Wang, Yongze Wang, Shengde Zhou","doi":"10.1007/s10529-025-03642-z","DOIUrl":null,"url":null,"abstract":"<p><p>The CRISPR/Cas9-based technology has been used for sequential gene editing in E. coli. The plasmids carrying the sgRNA and/or Cas9 genes need to be cured after each round of editing. Curing of these plasmids, particularly the sgRNA plasmid, limits the efficiency of sequential gene editing. In this study, a lethal endotoxin (ccdB) based counterselection was established for improving the overall efficiency of sequential gene editing in E. coli. This approach was validated for sequential editing (deletion) of cstA and ppsA genes in HBUT-P2 strain (W derivative). The experimental results showed that the transformation efficiency of sgRNA plasmid (pTargetF-tcr-P<sub>L</sub>-ccdB-N20) reached 10<sup>8</sup>-10<sup>9</sup> cfu/μg<sub>-DNA</sub>, resulting in a 100% and 93.75% recombination rate for cstA and ppsA gene, respectively. Upon completion of cstA gene editing, the sgRNA plasmid (pTargetF-tcr-P<sub>L</sub>-ccdB-N20 (cstA)) was effectively cured through ccdB based counterselection at 42 °C, with a 43.75% efficiency. At the end of sequential editing of ppsA gene, both Cas9 (25A) and sgRNA (pTargetF-tcr-P<sub>L</sub>-ccdB-N20 (ppsA)) plasmids were cured simultaneously through the sacB and ccdB based counterselections by incubating the cells on LB-sucrose (5%) plate at 42 °C, achieving a curing rate of 100% for Cas9 plasmid (25A), 37.5% for sgRNA plasmid (pTargetF-tcr-P<sub>L</sub>-ccdB-N20 (ppsA)), and 37.5% for both Cas9 and sgRNA plasmids. Moreover, this approach was further validated through efficient site-specific insertion of the csc operon into the slmA gene in DH5α (K12 derivative) and S322 (C derivative) strains. These results demonstrated that the endotoxin (ccdB) based counterselection improved the transformation efficiency of sgRNA plasmid, the recombination rate of the editing target gene, the curing rate of sgRNA plasmid, and the overall efficiency of sequential gene editing.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 5","pages":"118"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03642-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The CRISPR/Cas9-based technology has been used for sequential gene editing in E. coli. The plasmids carrying the sgRNA and/or Cas9 genes need to be cured after each round of editing. Curing of these plasmids, particularly the sgRNA plasmid, limits the efficiency of sequential gene editing. In this study, a lethal endotoxin (ccdB) based counterselection was established for improving the overall efficiency of sequential gene editing in E. coli. This approach was validated for sequential editing (deletion) of cstA and ppsA genes in HBUT-P2 strain (W derivative). The experimental results showed that the transformation efficiency of sgRNA plasmid (pTargetF-tcr-PL-ccdB-N20) reached 108-109 cfu/μg-DNA, resulting in a 100% and 93.75% recombination rate for cstA and ppsA gene, respectively. Upon completion of cstA gene editing, the sgRNA plasmid (pTargetF-tcr-PL-ccdB-N20 (cstA)) was effectively cured through ccdB based counterselection at 42 °C, with a 43.75% efficiency. At the end of sequential editing of ppsA gene, both Cas9 (25A) and sgRNA (pTargetF-tcr-PL-ccdB-N20 (ppsA)) plasmids were cured simultaneously through the sacB and ccdB based counterselections by incubating the cells on LB-sucrose (5%) plate at 42 °C, achieving a curing rate of 100% for Cas9 plasmid (25A), 37.5% for sgRNA plasmid (pTargetF-tcr-PL-ccdB-N20 (ppsA)), and 37.5% for both Cas9 and sgRNA plasmids. Moreover, this approach was further validated through efficient site-specific insertion of the csc operon into the slmA gene in DH5α (K12 derivative) and S322 (C derivative) strains. These results demonstrated that the endotoxin (ccdB) based counterselection improved the transformation efficiency of sgRNA plasmid, the recombination rate of the editing target gene, the curing rate of sgRNA plasmid, and the overall efficiency of sequential gene editing.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.