Jill Ashey, Federica Scucchia, Ariana S Huffmyer, Hollie M Putnam, Tali Mass
{"title":"Thermal and Acidification Gradients Reveal Tolerance Thresholds in Pocillopora acuta Recruits.","authors":"Jill Ashey, Federica Scucchia, Ariana S Huffmyer, Hollie M Putnam, Tali Mass","doi":"10.1111/mec.70116","DOIUrl":null,"url":null,"abstract":"<p><p>Ocean warming and acidification are among the biggest threats to the persistence of coral reefs. Organismal stress tolerance thresholds are life stage specific, can vary across levels of biological organisation and also depend on natural environmental variability. Here, we exposed the early life stages of Pocillopora acuta in Kāne'ohe Bay, Hawai'i, USA, a common reef-building coral throughout the Pacific, to projected ocean warming and acidification scenarios. We measured ecological, physiological, biomineralisation and molecular responses across the critical transition from larvae to newly settled recruits following 6 days of exposure to diel fluctuations in temperature and pH in Control (26.8°C-27.9°C, 7.82-7.96 pH<sub>Total</sub>), Mid (28.4°C-29.5°C, 7.65-7.79 pH<sub>Total</sub>) and High conditions (30.2°C-31.5°C, 7.44-7.59 pH<sub>Total</sub>). We found that P. acuta early life stages are capable of survival, settlement and calcification under all scenarios. The High conditions, however, caused a significant reduction in survival and settlement capacity, with changes in the skeletal fibre deposition patterns. Although there was limited impact on the expression of biomineralisation genes, exposure to High conditions resulted in strong transcriptomic responses including depressed metabolism, reduced ATP production and increased activity of DNA damage-repair processes, indicative of a compromised metabolic state. Collectively, our findings demonstrate that coral juveniles living in environments with large diurnal fluctuations in seawater temperature and pH, such as Kāne'ohe Bay, can tolerate exposure to moderate projected increased temperature and reduced pH. However, under more severe environmental conditions, significant negative effects on coral cellular metabolism and overall organismal survival jeopardise species fitness and recruitment.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e70116"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.70116","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean warming and acidification are among the biggest threats to the persistence of coral reefs. Organismal stress tolerance thresholds are life stage specific, can vary across levels of biological organisation and also depend on natural environmental variability. Here, we exposed the early life stages of Pocillopora acuta in Kāne'ohe Bay, Hawai'i, USA, a common reef-building coral throughout the Pacific, to projected ocean warming and acidification scenarios. We measured ecological, physiological, biomineralisation and molecular responses across the critical transition from larvae to newly settled recruits following 6 days of exposure to diel fluctuations in temperature and pH in Control (26.8°C-27.9°C, 7.82-7.96 pHTotal), Mid (28.4°C-29.5°C, 7.65-7.79 pHTotal) and High conditions (30.2°C-31.5°C, 7.44-7.59 pHTotal). We found that P. acuta early life stages are capable of survival, settlement and calcification under all scenarios. The High conditions, however, caused a significant reduction in survival and settlement capacity, with changes in the skeletal fibre deposition patterns. Although there was limited impact on the expression of biomineralisation genes, exposure to High conditions resulted in strong transcriptomic responses including depressed metabolism, reduced ATP production and increased activity of DNA damage-repair processes, indicative of a compromised metabolic state. Collectively, our findings demonstrate that coral juveniles living in environments with large diurnal fluctuations in seawater temperature and pH, such as Kāne'ohe Bay, can tolerate exposure to moderate projected increased temperature and reduced pH. However, under more severe environmental conditions, significant negative effects on coral cellular metabolism and overall organismal survival jeopardise species fitness and recruitment.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms