Carolyn A Feigeles, Artis Brasovs, Adam Puchalski, Olivia Laukat, Konstantin G Kornev, Kimberly L Weirich
{"title":"Protein condensates induce biopolymer filament bundling and network remodeling <i>via</i> capillary interactions.","authors":"Carolyn A Feigeles, Artis Brasovs, Adam Puchalski, Olivia Laukat, Konstantin G Kornev, Kimberly L Weirich","doi":"10.1039/d5sm00508f","DOIUrl":null,"url":null,"abstract":"<p><p>Many cellular processes are regulated by biopolymers that are self-assembled into higher order structures by protein interactions. The actin cytoskeleton, which forms the mechanical structure of cells, consists of actin filaments that are assembled into networks and bundles by protein cross-linkers. Specific network and bundle microstructures are determined by the type of cross-linker and support different physiological functions. Recently, there is also evidence that protein condensates can nucleate bundle formation with cytoskeletal filaments. Here, we find that protein condensates interact with pre-polymerized actin filaments to form networks of bundles. The condensates absorb on actin bundles and relax into barrel shaped droplets, evocative of drops of simple liquids on fibers. We investigate the condensate spreading and measure contact angle that condensates make with bundles. Intriguingly, condensates at the intersection of bundles cause capillary bridges which induce network remodeling. Our results suggest that network formation, bundling, and remodeling in biopolymer assemblies could be induced by capillary interactions due to condensates.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00508f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Many cellular processes are regulated by biopolymers that are self-assembled into higher order structures by protein interactions. The actin cytoskeleton, which forms the mechanical structure of cells, consists of actin filaments that are assembled into networks and bundles by protein cross-linkers. Specific network and bundle microstructures are determined by the type of cross-linker and support different physiological functions. Recently, there is also evidence that protein condensates can nucleate bundle formation with cytoskeletal filaments. Here, we find that protein condensates interact with pre-polymerized actin filaments to form networks of bundles. The condensates absorb on actin bundles and relax into barrel shaped droplets, evocative of drops of simple liquids on fibers. We investigate the condensate spreading and measure contact angle that condensates make with bundles. Intriguingly, condensates at the intersection of bundles cause capillary bridges which induce network remodeling. Our results suggest that network formation, bundling, and remodeling in biopolymer assemblies could be induced by capillary interactions due to condensates.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.