A thermo-hydro-mechanical-chemical coupled phase field framework for modeling fractures in porous rocks: the dual-fracture model

IF 5.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Rui Liu, Shuwei Zhou, Shikang Qin, Shanpeng Cao, Xiaoying Zhuang, Timon Rabczuk
{"title":"A thermo-hydro-mechanical-chemical coupled phase field framework for modeling fractures in porous rocks: the dual-fracture model","authors":"Rui Liu,&nbsp;Shuwei Zhou,&nbsp;Shikang Qin,&nbsp;Shanpeng Cao,&nbsp;Xiaoying Zhuang,&nbsp;Timon Rabczuk","doi":"10.1007/s11440-025-02713-9","DOIUrl":null,"url":null,"abstract":"<div><p>A THMC coupled phase field framework for modeling fractures in porous rocks is proposed in this study. The framework introduces additionally the damage variable governed synergistically by the phase field and chemical field to account for dual-fracture mechanisms. Through this damage variable, full coupling of the temperature, hydraulic, mechanical, chemical, and phase fields is achieved. Implemented on the COMSOL Multiphysics platform, this multi-field coupling framework is solved by using a staggered iteration algorithm. The proposed framework was verified through fracture propagation induced by various factors. Furthermore, two-dimensional case studies are conducted to investigate the effects of acid concentration, heterogeneity, injection rate, specific surface area, and scale parameters on fracture morphology, fluid pressure distribution, temperature distribution, pressure evolution, and fracture propagation range. Numerical results demonstrate that the predictions of the proposed THMC coupled phase field model for fracture evolution and acid breakthrough consumption align with existing studies, while effectively characterizing the influence of sensitivity parameters.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 10","pages":"5443 - 5467"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-025-02713-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A THMC coupled phase field framework for modeling fractures in porous rocks is proposed in this study. The framework introduces additionally the damage variable governed synergistically by the phase field and chemical field to account for dual-fracture mechanisms. Through this damage variable, full coupling of the temperature, hydraulic, mechanical, chemical, and phase fields is achieved. Implemented on the COMSOL Multiphysics platform, this multi-field coupling framework is solved by using a staggered iteration algorithm. The proposed framework was verified through fracture propagation induced by various factors. Furthermore, two-dimensional case studies are conducted to investigate the effects of acid concentration, heterogeneity, injection rate, specific surface area, and scale parameters on fracture morphology, fluid pressure distribution, temperature distribution, pressure evolution, and fracture propagation range. Numerical results demonstrate that the predictions of the proposed THMC coupled phase field model for fracture evolution and acid breakthrough consumption align with existing studies, while effectively characterizing the influence of sensitivity parameters.

Abstract Image

模拟多孔岩石裂缝的热-水-力-化学耦合相场框架:双裂缝模型
本文提出了一种模拟多孔岩石裂缝的THMC耦合相场框架。该框架还引入了由相场和化学场协同控制的损伤变量,以解释双断裂机制。通过这个损伤变量,实现了温度、液压、机械、化学和相场的完全耦合。该多场耦合框架在COMSOL Multiphysics平台上实现,采用交错迭代算法求解。通过各种因素诱导的断裂扩展验证了所提出的框架。通过二维实例研究,探讨了酸浓度、非均质性、注入速率、比表面积和尺度参数对裂缝形态、流体压力分布、温度分布、压力演化和裂缝扩展范围的影响。数值结果表明,提出的THMC耦合相场模型对裂缝演化和酸突破消耗的预测与已有研究一致,同时有效表征了敏感性参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信