{"title":"Mesoscale numerical investigation of fines detachment, migration, and erosion mechanisms in gas hydrate extraction","authors":"Pengwei Zhang, Wenzhe Gao, Yanlu Ding, Baoguo Liu","doi":"10.1007/s11440-025-02706-8","DOIUrl":null,"url":null,"abstract":"<div><p>Fines detachment, migration, and settling leads to internal erosion of the skeleton structure and clogging of pores, which is an intricate process during the extraction of gas hydrate from marine sediments. Particularly, fines cemented around gas hydrate particles may detach during the dissociation process. The intricacy of this process has not been well characterized in current mathematical models or numerical modeling. In this paper, a mesoscale numerical model coupling solid particle and fluid seepage for gas hydrate-bearing sediments is developed and employed to simulate the fines erosion process, revealing three different mechanisms for the erosion of fines. Fines detach from the soil or gas hydrate particles during the hydrate phase transition and are subject to the Stokes drag force, frictional force, buoyancy force, capillary force, and interparticle interactions within pore space. Based on the established model, the pore clogging due to either physical aggregation or bridging can be clearly identified. The numerical model was initially calibrated with microfluidics experiments, followed by a series of sensitivity analyses to assess the impacts of porosity, fines content, gas hydrate saturation, and pressure gradient on gas and sand production. Results indicate that the interparticle forces play a significant role in pore clogging, which is crucial for gas hydrate-bearing silty sands. The sand production or physical pore clogging is a multi-stage process due to the dissociation of gas hydrates.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 10","pages":"5469 - 5486"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-025-02706-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fines detachment, migration, and settling leads to internal erosion of the skeleton structure and clogging of pores, which is an intricate process during the extraction of gas hydrate from marine sediments. Particularly, fines cemented around gas hydrate particles may detach during the dissociation process. The intricacy of this process has not been well characterized in current mathematical models or numerical modeling. In this paper, a mesoscale numerical model coupling solid particle and fluid seepage for gas hydrate-bearing sediments is developed and employed to simulate the fines erosion process, revealing three different mechanisms for the erosion of fines. Fines detach from the soil or gas hydrate particles during the hydrate phase transition and are subject to the Stokes drag force, frictional force, buoyancy force, capillary force, and interparticle interactions within pore space. Based on the established model, the pore clogging due to either physical aggregation or bridging can be clearly identified. The numerical model was initially calibrated with microfluidics experiments, followed by a series of sensitivity analyses to assess the impacts of porosity, fines content, gas hydrate saturation, and pressure gradient on gas and sand production. Results indicate that the interparticle forces play a significant role in pore clogging, which is crucial for gas hydrate-bearing silty sands. The sand production or physical pore clogging is a multi-stage process due to the dissociation of gas hydrates.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.