Size and surface properties of polydopamine nanoparticles tunable via controlled oxidation conditions

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Antonello Nucera, Rita Guzzi, Giovanni Desiderio, Antonio Ferraro, Giovanni Dal Poggetto, Marco Castriota and Oriella Gennari
{"title":"Size and surface properties of polydopamine nanoparticles tunable via controlled oxidation conditions","authors":"Antonello Nucera, Rita Guzzi, Giovanni Desiderio, Antonio Ferraro, Giovanni Dal Poggetto, Marco Castriota and Oriella Gennari","doi":"10.1039/D5MA00359H","DOIUrl":null,"url":null,"abstract":"<p >Polydopamine nanoparticles (PDA NPs) have emerged as a versatile biomimetic material with tunable physicochemical properties, making them promising candidates for applications in biomedicine, energy storage, and photothermal therapy. In this study, we investigate the structural and functional evolution of PDA NPs synthesized under controlled oxidation conditions, emphasizing the interplay between molecular crosslinking, surface roughness, and optical properties. A systematic analysis using SEM, FTIR, and Raman spectroscopy reveals a progressive transformation of catechol (–OH) groups into quinones, leading to increased π–π stacking and crosslinking, which modulates both electronic and photothermal behaviour. Dynamic light scattering (DLS) analysis identified 24 hours as the optimal synthesis window, yielding uniform and colloidally stable nanoparticles (<em>D</em><small><sub>H</sub></small> ≈ 154 nm; <em>ζ</em>-potential ≈ –41 mV). At early oxidation stages (1–24 h), the high availability of free catechol and amine groups supports enhanced electron delocalization, while at intermediate oxidation times (48 h), excessive crosslinking restricts charge mobility, limiting functional performance. Prolonged oxidation (96–120 h) results in increased roughness, influencing both light absorption and heat diffusion. Comparative photothermal analysis with <em>Sepia melanin</em> demonstrates that PDA NPs exceed the thermal performance of natural eumelanin in both tunability and photothermal conversion efficiency, reaching a Δ<em>T</em> ≈ 48.9 °C, for the 120 h oxidation NPs. The findings highlight the critical role of oxidation-driven molecular modifications in defining PDA's optical and thermal performance. These insights establish a structure–property framework for optimizing PDA NPs for life science applications.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 19","pages":" 6956-6969"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00359h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00359h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polydopamine nanoparticles (PDA NPs) have emerged as a versatile biomimetic material with tunable physicochemical properties, making them promising candidates for applications in biomedicine, energy storage, and photothermal therapy. In this study, we investigate the structural and functional evolution of PDA NPs synthesized under controlled oxidation conditions, emphasizing the interplay between molecular crosslinking, surface roughness, and optical properties. A systematic analysis using SEM, FTIR, and Raman spectroscopy reveals a progressive transformation of catechol (–OH) groups into quinones, leading to increased π–π stacking and crosslinking, which modulates both electronic and photothermal behaviour. Dynamic light scattering (DLS) analysis identified 24 hours as the optimal synthesis window, yielding uniform and colloidally stable nanoparticles (DH ≈ 154 nm; ζ-potential ≈ –41 mV). At early oxidation stages (1–24 h), the high availability of free catechol and amine groups supports enhanced electron delocalization, while at intermediate oxidation times (48 h), excessive crosslinking restricts charge mobility, limiting functional performance. Prolonged oxidation (96–120 h) results in increased roughness, influencing both light absorption and heat diffusion. Comparative photothermal analysis with Sepia melanin demonstrates that PDA NPs exceed the thermal performance of natural eumelanin in both tunability and photothermal conversion efficiency, reaching a ΔT ≈ 48.9 °C, for the 120 h oxidation NPs. The findings highlight the critical role of oxidation-driven molecular modifications in defining PDA's optical and thermal performance. These insights establish a structure–property framework for optimizing PDA NPs for life science applications.

Abstract Image

可通过可控氧化条件调节的聚多巴胺纳米颗粒的尺寸和表面性质
聚多巴胺纳米粒子(PDA NPs)是一种多功能的仿生材料,具有可调的物理化学特性,在生物医学、储能和光热治疗等领域有着广阔的应用前景。在这项研究中,我们研究了在可控氧化条件下合成的PDA NPs的结构和功能演变,重点研究了分子交联、表面粗糙度和光学性质之间的相互作用。利用扫描电镜、红外光谱和拉曼光谱的系统分析表明,邻苯二酚(-OH)基团逐渐转化为醌,导致π -π堆积和交联增加,从而调节电子和光热行为。动态光散射(DLS)分析表明,24小时为最佳合成窗口,可制得均匀且胶体稳定的纳米颗粒(DH≈154 nm; ζ-电位≈-41 mV)。在早期氧化阶段(1-24小时),游离儿茶酚和胺基的高可用性支持增强的电子离域,而在中间氧化时间(48小时),过度的交联限制了电荷迁移,限制了功能性能。长时间氧化(96-120小时)导致粗糙度增加,影响光吸收和热扩散。与Sepia melanin的对比光热分析表明,PDA NPs在可调性和光热转换效率方面都优于天然真黑素,在120 h氧化NPs时达到ΔT≈48.9°C。研究结果强调了氧化驱动的分子修饰在确定PDA的光学和热性能方面的关键作用。这些见解为优化PDA NPs的生命科学应用建立了一个结构-属性框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信