Rui Li , Linlv Xiao , Feiyang Cai , Jiayong Gao , Maolin He , Jun Jing
{"title":"Incorporating rocky desertification characteristic into soil erosion modeling in karst regions aligns better with regional conditions","authors":"Rui Li , Linlv Xiao , Feiyang Cai , Jiayong Gao , Maolin He , Jun Jing","doi":"10.1016/j.iswcr.2025.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>The Revised Universal Soil Loss Equation (RUSLE) is the most widely used soil erosion modeling method worldwide. The karst regions, influenced by geological conditions and human activities, feature extensive exposure of carbonate rocks on the surface, which presents challenges for the application of the RUSLE model in these areas. This study introduces the rocky desertification factor (D) to characterize the influence of exposed surface rock on soil loss. The relationship between rock exposure rate and soil erosion was incorporated into the RUSLE model to develop a RUSLE-D model. We compared the performance of the RUSLE and RUSLE-D models using long-term high-frequency hydrological signals from two typical karst catchments to validate the applicability of the RUSLE-D model in karst areas. The results indicated that under natural rainfall conditions, soil erosion decreased as the rock exposure rate increased, showing a negative exponential relationship. The RUSLE-D model estimated the multi-year average soil erosion rates for the SBT and GC catchments to be 8.99 and 14.63 t ha<sup>−2</sup>·yr<sup>−1</sup>, respectively. The <em>R</em><sup>2</sup> values for the RUSLE and RUSLE-D models in the SBT catchment were 0.34 and 0.78, respectively, with NSE values of −0.03 and 0.55, and PBIAS values of −81.39 % and 13.87 %; for the GC catchment, the <em>R</em><sup>2</sup> values were 0.14 and 0.68, with NSE values of −13.82 and 0.43, and PBIAS values of −182.85 % and −24.27 %. The MCI indices for the SBT and GC catchments were 0.56 and 0.96, respectively. The RUSLE-D model significantly improved the accuracy of soil erosion simulation in typical karst watersheds. This study underscores the importance of incorporating the rocky desertification factor in soil erosion assessments within karst areas. The newly developed RUSLE-D model contributes to further developing the USLE/RUSLE series of models, enhancing their applicability in karst areas.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 4","pages":"Pages 957-970"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633925000735","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Revised Universal Soil Loss Equation (RUSLE) is the most widely used soil erosion modeling method worldwide. The karst regions, influenced by geological conditions and human activities, feature extensive exposure of carbonate rocks on the surface, which presents challenges for the application of the RUSLE model in these areas. This study introduces the rocky desertification factor (D) to characterize the influence of exposed surface rock on soil loss. The relationship between rock exposure rate and soil erosion was incorporated into the RUSLE model to develop a RUSLE-D model. We compared the performance of the RUSLE and RUSLE-D models using long-term high-frequency hydrological signals from two typical karst catchments to validate the applicability of the RUSLE-D model in karst areas. The results indicated that under natural rainfall conditions, soil erosion decreased as the rock exposure rate increased, showing a negative exponential relationship. The RUSLE-D model estimated the multi-year average soil erosion rates for the SBT and GC catchments to be 8.99 and 14.63 t ha−2·yr−1, respectively. The R2 values for the RUSLE and RUSLE-D models in the SBT catchment were 0.34 and 0.78, respectively, with NSE values of −0.03 and 0.55, and PBIAS values of −81.39 % and 13.87 %; for the GC catchment, the R2 values were 0.14 and 0.68, with NSE values of −13.82 and 0.43, and PBIAS values of −182.85 % and −24.27 %. The MCI indices for the SBT and GC catchments were 0.56 and 0.96, respectively. The RUSLE-D model significantly improved the accuracy of soil erosion simulation in typical karst watersheds. This study underscores the importance of incorporating the rocky desertification factor in soil erosion assessments within karst areas. The newly developed RUSLE-D model contributes to further developing the USLE/RUSLE series of models, enhancing their applicability in karst areas.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research