Sanjana Agarwal , Jelena Grbić , Michele Intermont , Milica Jovanović , Evgeniya Lagoda , Sarah Whitehouse
{"title":"Steenrod operations on polyhedral products","authors":"Sanjana Agarwal , Jelena Grbić , Michele Intermont , Milica Jovanović , Evgeniya Lagoda , Sarah Whitehouse","doi":"10.1016/j.topol.2025.109446","DOIUrl":null,"url":null,"abstract":"<div><div>We describe the action of the mod 2 Steenrod algebra on the cohomology of various polyhedral products and related spaces. We carry this out for Davis-Januszkiewicz spaces and their generalizations, for moment-angle complexes as well as for certain polyhedral joins. By studying the combinatorics of underlying simplicial complexes, we deduce some consequences for the lowest cohomological dimension in which non-trivial Steenrod operations can appear.</div><div>We present a version of cochain-level formulas for Steenrod operations on simplicial complexes. We explain the idea of “propagating” such formulas from a simplicial complex <em>K</em> to polyhedral joins over <em>K</em> and we give examples of this process. We tie the propagation of the Steenrod algebra actions on polyhedral joins to those on moment-angle complexes. Although these are cases where one can understand the Steenrod action via a stable homotopy decomposition, we anticipate applying this method to cases where there is no such decomposition.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109446"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125002445","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We describe the action of the mod 2 Steenrod algebra on the cohomology of various polyhedral products and related spaces. We carry this out for Davis-Januszkiewicz spaces and their generalizations, for moment-angle complexes as well as for certain polyhedral joins. By studying the combinatorics of underlying simplicial complexes, we deduce some consequences for the lowest cohomological dimension in which non-trivial Steenrod operations can appear.
We present a version of cochain-level formulas for Steenrod operations on simplicial complexes. We explain the idea of “propagating” such formulas from a simplicial complex K to polyhedral joins over K and we give examples of this process. We tie the propagation of the Steenrod algebra actions on polyhedral joins to those on moment-angle complexes. Although these are cases where one can understand the Steenrod action via a stable homotopy decomposition, we anticipate applying this method to cases where there is no such decomposition.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.