Boxiang Zhang , Yanfeng Jia , Haoming Fan , Chengjiu Guo , Fangli Su , Shuang Li , Juan Fu , Xi Zhang , Mingyao Yu , Mingchun Yang , Renming Ma
{"title":"Impact of soil compaction on the rill erosion of Mollisol by waterflow: A comparative analysis before and after the seasonal freezing and thawing","authors":"Boxiang Zhang , Yanfeng Jia , Haoming Fan , Chengjiu Guo , Fangli Su , Shuang Li , Juan Fu , Xi Zhang , Mingyao Yu , Mingchun Yang , Renming Ma","doi":"10.1016/j.iswcr.2025.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>Soil erosion resulting from soil compaction and freeze-thaw action is a major global environmental issue in intensively mechanized agricultural and cold regions. Existing studies predominantly focus on the direct effects of freeze-thaw cycles on soil erosion, yet overlook the legacy effects of pre-freeze-thaw soil compaction. This study aimed to reveal the cross-temporal impact mechanisms of pre-freeze-thaw soil compaction on post-freeze-thaw soil erosion and how soil properties drive these effects. A comparative study was conducted in the Mollisol region of Northeast China by utilizing in situ field erosion experiments and soil property measurements under various compaction levels before and after the freeze-thaw period. Results showed that before the freeze-thaw period, compaction significantly increased total runoff and sediment mass (p < 0.05). After the freeze-thaw period, the sediment mass of compacted soil decreased by 1.84 %–57.73 % compared to before the freeze-thaw period, but still increased by 28.59 %–148.22 % compared to uncompacted soil. The structural equation model revealed that before the freeze-thaw period, the influence of soil properties on runoff was greater than their direct effect on sediment mass, and the sediment mass variation was mainly driven by runoff scouring due to soil compaction. After the freeze-thaw period, the decreased soil erosion resistance (aggregate stability and soil strength) and the increased runoff caused by the legacy effects of compaction were the primary reasons for higher sediment mass in compacted soil compared to uncompacted soil. This study highlights the crucial role of human activities before the freeze-thaw period in influencing subsequent erosion dynamics, providing essential insights for erosion control and soil restoration in vulnerable farmlands.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 4","pages":"Pages 756-770"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633925000462","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil erosion resulting from soil compaction and freeze-thaw action is a major global environmental issue in intensively mechanized agricultural and cold regions. Existing studies predominantly focus on the direct effects of freeze-thaw cycles on soil erosion, yet overlook the legacy effects of pre-freeze-thaw soil compaction. This study aimed to reveal the cross-temporal impact mechanisms of pre-freeze-thaw soil compaction on post-freeze-thaw soil erosion and how soil properties drive these effects. A comparative study was conducted in the Mollisol region of Northeast China by utilizing in situ field erosion experiments and soil property measurements under various compaction levels before and after the freeze-thaw period. Results showed that before the freeze-thaw period, compaction significantly increased total runoff and sediment mass (p < 0.05). After the freeze-thaw period, the sediment mass of compacted soil decreased by 1.84 %–57.73 % compared to before the freeze-thaw period, but still increased by 28.59 %–148.22 % compared to uncompacted soil. The structural equation model revealed that before the freeze-thaw period, the influence of soil properties on runoff was greater than their direct effect on sediment mass, and the sediment mass variation was mainly driven by runoff scouring due to soil compaction. After the freeze-thaw period, the decreased soil erosion resistance (aggregate stability and soil strength) and the increased runoff caused by the legacy effects of compaction were the primary reasons for higher sediment mass in compacted soil compared to uncompacted soil. This study highlights the crucial role of human activities before the freeze-thaw period in influencing subsequent erosion dynamics, providing essential insights for erosion control and soil restoration in vulnerable farmlands.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research