Jie Li , Wen Zhou , Jianzhi Zhang , Li Ma , Zhuan Lv , Yiqun Geng , Xing Chen , Jing Li
{"title":"O-GlcNAcylation of YTHDF2 antagonizes ERK-dependent phosphorylation and inhibits lung carcinoma","authors":"Jie Li , Wen Zhou , Jianzhi Zhang , Li Ma , Zhuan Lv , Yiqun Geng , Xing Chen , Jing Li","doi":"10.1016/j.fmre.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>The intracellular O-linked N-acetylglucosamine (O-GlcNAc) glycosylation mediates many signal transduction events and regulates tumorigenesis. Previously the RNA N6-methyladenosine (m<sup>6</sup>A) reader, YTH (YT521-B homology) domain 2 (YTHDF2), has been shown to be O-GlcNAcylated on Ser-263 during Hepatitis B virus (HBV) infection and promote HBV-related hepatocellular carcinoma. Herein we mapped YTHDF2 O-GlcNAcylation at Thr-49 via electron-transfer dissociation mass spectrometry under unperturbed conditions. We show that YTHDF2 Thr-49 O-GlcNAcylation antagonizes Extracellular-signal regulated kinase (ERK)-dependent phosphorylation at Ser-39 and promotes YTHDF2 degradation. The downstream signaling pathway of YTHDF2 in lung carcinoma is thus upregulated, which leads to the downregulation of c-Myc. We further used mouse xenograft models to show that YTHDF2-T49A mutants increased lung cancer mass and size. Our work reveals a key role of YTHDF2 O-GlcNAcylation in tumorigenesis and suggests that O-GlcNAcylation exerts distinct functions under different biological stress.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 5","pages":"Pages 2388-2396"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325824002826","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
The intracellular O-linked N-acetylglucosamine (O-GlcNAc) glycosylation mediates many signal transduction events and regulates tumorigenesis. Previously the RNA N6-methyladenosine (m6A) reader, YTH (YT521-B homology) domain 2 (YTHDF2), has been shown to be O-GlcNAcylated on Ser-263 during Hepatitis B virus (HBV) infection and promote HBV-related hepatocellular carcinoma. Herein we mapped YTHDF2 O-GlcNAcylation at Thr-49 via electron-transfer dissociation mass spectrometry under unperturbed conditions. We show that YTHDF2 Thr-49 O-GlcNAcylation antagonizes Extracellular-signal regulated kinase (ERK)-dependent phosphorylation at Ser-39 and promotes YTHDF2 degradation. The downstream signaling pathway of YTHDF2 in lung carcinoma is thus upregulated, which leads to the downregulation of c-Myc. We further used mouse xenograft models to show that YTHDF2-T49A mutants increased lung cancer mass and size. Our work reveals a key role of YTHDF2 O-GlcNAcylation in tumorigenesis and suggests that O-GlcNAcylation exerts distinct functions under different biological stress.