A prop structure on partitions

IF 0.5 4区 数学 Q3 MATHEMATICS
Coline Emprin , Dana Hunter , Muriel Livernet , Christine Vespa , Inna Zakharevich
{"title":"A prop structure on partitions","authors":"Coline Emprin ,&nbsp;Dana Hunter ,&nbsp;Muriel Livernet ,&nbsp;Christine Vespa ,&nbsp;Inna Zakharevich","doi":"10.1016/j.topol.2025.109442","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by its link with functor homology, we study the prop freely generated by the operadic suspension of the operad <em>Com</em><span>. We exhibit a particular family of generators, for which the composition and the symmetric group actions admit simple descriptions. We highlight associated subcategories of its Karoubi envelope which allows us to compute extensions groups between simple functors from free groups. We construct a particular prop structure on partitions whose composition corresponds to the Yoneda product of extensions between exterior power functors.</span></div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109442"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125002408","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by its link with functor homology, we study the prop freely generated by the operadic suspension of the operad Com. We exhibit a particular family of generators, for which the composition and the symmetric group actions admit simple descriptions. We highlight associated subcategories of its Karoubi envelope which allows us to compute extensions groups between simple functors from free groups. We construct a particular prop structure on partitions whose composition corresponds to the Yoneda product of extensions between exterior power functors.
隔板上的支柱结构
由于它与函子同调的联系,我们研究了由运算符Com的运算悬挂自由生成的prop。我们展示了一类特殊的生成器,它们的组成和对称群作用允许简单的描述。我们强调了它的Karoubi包络的相关子范畴,它允许我们从自由群中计算简单函子之间的扩展群。我们构造了一个特殊的分区上的支柱结构,其组成对应于外幂函子间扩展的Yoneda积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信