Najat A. Amin , Adnan Qamar , Henry J. Tanudjaja , Sarah Kerdi , Ho Kyong Shon , Noreddine Ghaffour
{"title":"Double filament feed spacers for enhanced performance in reverse osmosis modules","authors":"Najat A. Amin , Adnan Qamar , Henry J. Tanudjaja , Sarah Kerdi , Ho Kyong Shon , Noreddine Ghaffour","doi":"10.1016/j.watres.2025.124696","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing feed spacer geometry can significantly improve the efficiency of reverse osmosis (RO) modules through enhanced hydrodynamics. In this study, a novel symmetrical spacer is developed to mitigate concentration polarization and enhance RO performance. The proposed double filament spacer design features double elliptical or circular filaments separated by a slit along their length, connected by column-type nodes. Flow simulations, a type of computational fluid dynamics simulation in which the Navier-Stokes equations are numerically solved without relying on turbulence models, provided a fundamental analysis of double filament spacer performance. These reveal an even velocity distribution and increased flow mixing induced by the double filament, regardless of the cross-section type. Moreover, additional vortices were promoted downstream of the double filament spacer nodes, producing a jetting effect. This phenomenon helped to reduce the polarization region on the membrane surface and improve the permeation potential, as confirmed by salt concentration and permeation velocity computations. Although both double filament spacers outperformed the commercial design, the circular double filament spacer exhibited higher permeation and lower salt deposition capabilities than the elliptical-shaped filaments. Furthermore, the practical effectiveness of a double filament spacer was experimentally assessed in the RO system. Both spacers showed the potential to enhance flux production and specific flux relative to commercial design, with an enhancement reaching 68 % in the case of the circular double filament spacer. Utilizing this spacer also demonstrated a substantial reduction in pressure drop by 35 %. Therefore, the novel double filament spacer design, particularly the circular filament type, appears well-suited for achieving highly efficient and low-energy performance in RO module elements.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"288 ","pages":"Article 124696"},"PeriodicalIF":12.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425015994","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing feed spacer geometry can significantly improve the efficiency of reverse osmosis (RO) modules through enhanced hydrodynamics. In this study, a novel symmetrical spacer is developed to mitigate concentration polarization and enhance RO performance. The proposed double filament spacer design features double elliptical or circular filaments separated by a slit along their length, connected by column-type nodes. Flow simulations, a type of computational fluid dynamics simulation in which the Navier-Stokes equations are numerically solved without relying on turbulence models, provided a fundamental analysis of double filament spacer performance. These reveal an even velocity distribution and increased flow mixing induced by the double filament, regardless of the cross-section type. Moreover, additional vortices were promoted downstream of the double filament spacer nodes, producing a jetting effect. This phenomenon helped to reduce the polarization region on the membrane surface and improve the permeation potential, as confirmed by salt concentration and permeation velocity computations. Although both double filament spacers outperformed the commercial design, the circular double filament spacer exhibited higher permeation and lower salt deposition capabilities than the elliptical-shaped filaments. Furthermore, the practical effectiveness of a double filament spacer was experimentally assessed in the RO system. Both spacers showed the potential to enhance flux production and specific flux relative to commercial design, with an enhancement reaching 68 % in the case of the circular double filament spacer. Utilizing this spacer also demonstrated a substantial reduction in pressure drop by 35 %. Therefore, the novel double filament spacer design, particularly the circular filament type, appears well-suited for achieving highly efficient and low-energy performance in RO module elements.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.