Adekunle L. Omoniyi, Kushal Panchal, Roozbeh Mafi, Li Xi
{"title":"Effects of Fiber Modification on the Mechanical Properties of Solution-Cast Poly(vinyl chloride) Films Reinforced by Aramid Fibers","authors":"Adekunle L. Omoniyi, Kushal Panchal, Roozbeh Mafi, Li Xi","doi":"10.1016/j.polymer.2025.129151","DOIUrl":null,"url":null,"abstract":"This study compared the effectiveness of three fiber treatment methods for reinforcing polyvinyl chloride (PVC) with aramid fibers. Two of them used phosphoric and nitric acids, respectively, the latter of which was introduced for the first time. Acid etching roughens the fiber surface for increased friction and mechanical interlocking with PVC. The third approach treated fibers with a dimethyl sulfoxide (DMSO)/potassium hydroxide (KOH) deprotonation procedure. A more streamlined procedure was introduced in this study which omitted alkyl functionalization in favor of ethanol precipitation. Deprotonation disrupts the crystalline structure in the fibers and unbundle them into aramid nanofibers (ANFs). All treatment procedures lead to substantial improvements in composite mechanical properties. Compared with phosphorous acid, treatment by nitric acid results in higher tensile strength and Young’s modulus. Composites with ANFs show highest tensile strength among all cases. Fractography reveals distinct failure mechanisms between composites with acid-treated fibers versus those with ANFs. The acid-treated fibers exhibit interfacial delamination during material failure, indicating that enhanced composite strength is mainly attributed to stronger interfacial forces. In contrast, ANFs do not carry load in the same way as the original fibers do, but their smaller dimensions allow nanoscale dispersion, which can suppress microcrack formation during deformation. Our systematic evaluation of fiber treatment options provides critical insights for tailoring fiber-matrix interactions in non-reactive thermoplastic systems, advancing the application potential of flexible PVC in load-bearing environments.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"20 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2025.129151","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study compared the effectiveness of three fiber treatment methods for reinforcing polyvinyl chloride (PVC) with aramid fibers. Two of them used phosphoric and nitric acids, respectively, the latter of which was introduced for the first time. Acid etching roughens the fiber surface for increased friction and mechanical interlocking with PVC. The third approach treated fibers with a dimethyl sulfoxide (DMSO)/potassium hydroxide (KOH) deprotonation procedure. A more streamlined procedure was introduced in this study which omitted alkyl functionalization in favor of ethanol precipitation. Deprotonation disrupts the crystalline structure in the fibers and unbundle them into aramid nanofibers (ANFs). All treatment procedures lead to substantial improvements in composite mechanical properties. Compared with phosphorous acid, treatment by nitric acid results in higher tensile strength and Young’s modulus. Composites with ANFs show highest tensile strength among all cases. Fractography reveals distinct failure mechanisms between composites with acid-treated fibers versus those with ANFs. The acid-treated fibers exhibit interfacial delamination during material failure, indicating that enhanced composite strength is mainly attributed to stronger interfacial forces. In contrast, ANFs do not carry load in the same way as the original fibers do, but their smaller dimensions allow nanoscale dispersion, which can suppress microcrack formation during deformation. Our systematic evaluation of fiber treatment options provides critical insights for tailoring fiber-matrix interactions in non-reactive thermoplastic systems, advancing the application potential of flexible PVC in load-bearing environments.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.