{"title":"Electronic Asymmetry in Janus Ce/ThXY (X, Y= S and Se) Promoting Photocatalytic Oxygen Evolution Reaction in Acidic environments","authors":"Jinhao Xu, Shuxian Hu","doi":"10.1039/d5ta04783h","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) materials have emerged as promising candidates for photocatalytic water splitting due to their exceptional electronic and structural properties. While transition metal dichalcogenides (TMDs) have been widely studied, the potential of f-electron-based dichalcogenides remains underexplored. In this study, we employ first-principles density functional theory (DFT) calculations to investigate the structural stability, electronic properties, and photocatalytic performance of monolayer thorium (Th) and cerium (Ce)-based Janus dichalcogenides MXY (M = Th, Ce; X, Y = S, Se, Te). Our findings reveal that the 1T-phase is the most thermodynamically stable configuration, due to f-orbital tend to be Oh symmetry. Band structure analysis indicates that 1T-phase Th-based compounds possess conduction and valence band positions suitable for overall water splitting, while Ce-based materials exhibit limitations due to lower conduction band minima. Optical absorption spectra highlight that ThSe₂, ThSSe, ThTe₂, ThSTe, and ThSeTe demonstrate strong visible-light absorption, making them potential photocatalysts. Additionally, free energy analysis of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) intermediates identifies ThSTe and ThSeTe as highly active for OER across a broad pH range. These findings provide insights into the design of f-electron-based materials for renewable energy applications and highlight their potential as next-generation photocatalysts.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"92 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta04783h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials have emerged as promising candidates for photocatalytic water splitting due to their exceptional electronic and structural properties. While transition metal dichalcogenides (TMDs) have been widely studied, the potential of f-electron-based dichalcogenides remains underexplored. In this study, we employ first-principles density functional theory (DFT) calculations to investigate the structural stability, electronic properties, and photocatalytic performance of monolayer thorium (Th) and cerium (Ce)-based Janus dichalcogenides MXY (M = Th, Ce; X, Y = S, Se, Te). Our findings reveal that the 1T-phase is the most thermodynamically stable configuration, due to f-orbital tend to be Oh symmetry. Band structure analysis indicates that 1T-phase Th-based compounds possess conduction and valence band positions suitable for overall water splitting, while Ce-based materials exhibit limitations due to lower conduction band minima. Optical absorption spectra highlight that ThSe₂, ThSSe, ThTe₂, ThSTe, and ThSeTe demonstrate strong visible-light absorption, making them potential photocatalysts. Additionally, free energy analysis of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) intermediates identifies ThSTe and ThSeTe as highly active for OER across a broad pH range. These findings provide insights into the design of f-electron-based materials for renewable energy applications and highlight their potential as next-generation photocatalysts.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.