A peridynamic approach to analysis of coupled magneto-electro-mechanical systems

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Anasuyakumari Maram, Subrata Mondal, Sudarshan Dhua
{"title":"A peridynamic approach to analysis of coupled magneto-electro-mechanical systems","authors":"Anasuyakumari Maram, Subrata Mondal, Sudarshan Dhua","doi":"10.1016/j.ijengsci.2025.104391","DOIUrl":null,"url":null,"abstract":"A non-ordinary state-based peridynamic model(NOSBPD) is presented for linear piezoelectromagnetic material(PEM). The corresponding material model is developed by establishing the connection between the classical theory of piezoelectromagnetics and the newly proposed peridynamic framework. The variational approach and Hamiltonian principle are utilised to establish the equation of motion. This investigation shows the effectiveness of the proposed model to handle piezoelectromagnetic material. It is also shown that the considered stabilisation method effectively reduces the instabilities of NOSBPD. The dynamic behaviour of piezoelectromagnetic material in the proposed framework is investigated. The dispersion relations for stabilised versions of NOSBPD in one and two dimensions are established analytically for PEM. The graphs illustrate the influence of <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mi>δ</mml:mi></mml:math> and different nonlocality functions on frequency, phase velocity, and group velocity. Also, the significant impact of critical coupling parameters on frequency is studied using graphical demonstration. Piezoelectromagnetic materials are used in a wide range of applications to constitute transducers such as actuators and sensors. Gaining insight into their wave and vibrational properties is indispensable for the advancement of reliable and optimised devices.","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"4 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijengsci.2025.104391","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A non-ordinary state-based peridynamic model(NOSBPD) is presented for linear piezoelectromagnetic material(PEM). The corresponding material model is developed by establishing the connection between the classical theory of piezoelectromagnetics and the newly proposed peridynamic framework. The variational approach and Hamiltonian principle are utilised to establish the equation of motion. This investigation shows the effectiveness of the proposed model to handle piezoelectromagnetic material. It is also shown that the considered stabilisation method effectively reduces the instabilities of NOSBPD. The dynamic behaviour of piezoelectromagnetic material in the proposed framework is investigated. The dispersion relations for stabilised versions of NOSBPD in one and two dimensions are established analytically for PEM. The graphs illustrate the influence of δ and different nonlocality functions on frequency, phase velocity, and group velocity. Also, the significant impact of critical coupling parameters on frequency is studied using graphical demonstration. Piezoelectromagnetic materials are used in a wide range of applications to constitute transducers such as actuators and sensors. Gaining insight into their wave and vibrational properties is indispensable for the advancement of reliable and optimised devices.
磁-电-机械耦合系统的周动力学分析方法
提出了线性压电材料(PEM)的非普通状态周动力学模型(NOSBPD)。通过建立经典压电理论与新提出的周动力框架之间的联系,建立了相应的材料模型。利用变分法和哈密顿原理建立了运动方程。研究结果表明,该模型对处理压电材料是有效的。研究还表明,所考虑的稳定方法可以有效地降低NOSBPD的不稳定性。研究了压电材料在该框架中的动态行为。对质子交换膜,建立了稳定型NOSBPD在一维和二维上的色散关系。图中显示了δ和不同的非局域函数对频率、相速度和群速度的影响。通过图形演示,研究了关键耦合参数对频率的显著影响。压电材料被广泛应用于构成传感器,如执行器和传感器。深入了解它们的波动和振动特性对于可靠和优化设备的进步是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信