{"title":"High-resolution optical microscopy in complex environments with a single-pixel detector","authors":"Tianshun Zhang, Yang Peng, Wen Chen","doi":"10.1063/5.0289290","DOIUrl":null,"url":null,"abstract":"Optical microscopy faces a challenge in strongly scattering environments due to severe light attenuation and wave degradation. Here, we report high-resolution optical microscopy in complex environments with a single-pixel detector. By projecting miniaturized random patterns onto a specimen, a series of light intensities can be synchronously collected via single-pixel detection. Dynamic variations in the turbidity in complex scattering environments induce nonlinear attenuations. A framework of untrained neural networks enhanced by a physical model is developed to estimate a series of scattering-induced scaling factors and achieve high-resolution object reconstruction. The designed optical microscopy system, employing a tunable lens with autofocusing, is also applied to reconstruct high-quality and high-resolution images of biological specimens over varying fields of view against complex and dynamic scattering. It is demonstrated in experiments that the proposed method is effective and robust, providing a viable approach for optical microscopy through complex scattering in dynamic media.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"66 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0289290","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Optical microscopy faces a challenge in strongly scattering environments due to severe light attenuation and wave degradation. Here, we report high-resolution optical microscopy in complex environments with a single-pixel detector. By projecting miniaturized random patterns onto a specimen, a series of light intensities can be synchronously collected via single-pixel detection. Dynamic variations in the turbidity in complex scattering environments induce nonlinear attenuations. A framework of untrained neural networks enhanced by a physical model is developed to estimate a series of scattering-induced scaling factors and achieve high-resolution object reconstruction. The designed optical microscopy system, employing a tunable lens with autofocusing, is also applied to reconstruct high-quality and high-resolution images of biological specimens over varying fields of view against complex and dynamic scattering. It is demonstrated in experiments that the proposed method is effective and robust, providing a viable approach for optical microscopy through complex scattering in dynamic media.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.