Quantifying complexity of continuous-variable quantum states via Wehrl entropy and Fisher information

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Siting Tang, Francesco Albarelli, Yue Zhang, Shunlong Luo and Matteo G A Paris
{"title":"Quantifying complexity of continuous-variable quantum states via Wehrl entropy and Fisher information","authors":"Siting Tang, Francesco Albarelli, Yue Zhang, Shunlong Luo and Matteo G A Paris","doi":"10.1088/2058-9565/ae08df","DOIUrl":null,"url":null,"abstract":"The notion of complexity of quantum states is quite different from uncertainty or information contents, and involves the tradeoff between its classical and quantum features. In this work, we introduce a quantifier of complexity of continuous-variable states, e.g. quantum optical states, based on the Husimi quasiprobability distribution. This quantity is built upon two functions of the state: the Wehrl entropy, capturing the spread of the distribution, and the Fisher information with respect to location parameters, which captures the opposite behavior, i.e. localization in phase space. We analyze the basic properties of the quantifier and illustrate its features by evaluating complexity of Gaussian states and some relevant non-Gaussian states. We further generalize the quantifier in terms of s-ordered phase-space distributions and illustrate its implications.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"66 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ae08df","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The notion of complexity of quantum states is quite different from uncertainty or information contents, and involves the tradeoff between its classical and quantum features. In this work, we introduce a quantifier of complexity of continuous-variable states, e.g. quantum optical states, based on the Husimi quasiprobability distribution. This quantity is built upon two functions of the state: the Wehrl entropy, capturing the spread of the distribution, and the Fisher information with respect to location parameters, which captures the opposite behavior, i.e. localization in phase space. We analyze the basic properties of the quantifier and illustrate its features by evaluating complexity of Gaussian states and some relevant non-Gaussian states. We further generalize the quantifier in terms of s-ordered phase-space distributions and illustrate its implications.
利用Wehrl熵和Fisher信息量化连续变量量子态的复杂性
量子态复杂性的概念与不确定性或信息量的概念有很大的不同,它涉及到其经典特征和量子特征之间的权衡。在本文中,我们引入了一个基于Husimi准概率分布的连续变量态(如量子光学态)的复杂性量词。这个量是建立在状态的两个函数上的:Wehrl熵,捕获分布的传播,以及关于位置参数的Fisher信息,它捕获相反的行为,即相空间中的局部化。我们分析了量词的基本性质,并通过评价高斯态和一些相关的非高斯态的复杂性来说明量词的特征。我们进一步将量词推广到s序相空间分布,并说明其含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信