Advancing Delirium Detection through the Open Health Natural Language Processing Consortium and ENACT Network.

Sunyang Fu,Min Ji Kwak,Jaerong Ahn,Zhiyi Yue,Shreyas Ranganath,Joseph R Applegate,Andrew Wen,Liwei Wang,Chenyu Li,Michele Morris,Kelly M Toth,Timothy D Girard,John D Osborne,Richard E Kennedy,Nelly-Estefanie Garduno-Rapp,Phillip Reeder,Justin F Rousseau,Chao Yan,You Chen,Mayur B Patel,Tyler J Murphy,Bradley A Malin,Chan Mi Park,Jia Heling,Sandeep Pagali,Allyson K Palmer,Jennifer St Sauver,Sunghwan Sohn,Elmer V Bernstam,Shyam Visweswaran,Yanshan Wang,Hongfang Liu
{"title":"Advancing Delirium Detection through the Open Health Natural Language Processing Consortium and ENACT Network.","authors":"Sunyang Fu,Min Ji Kwak,Jaerong Ahn,Zhiyi Yue,Shreyas Ranganath,Joseph R Applegate,Andrew Wen,Liwei Wang,Chenyu Li,Michele Morris,Kelly M Toth,Timothy D Girard,John D Osborne,Richard E Kennedy,Nelly-Estefanie Garduno-Rapp,Phillip Reeder,Justin F Rousseau,Chao Yan,You Chen,Mayur B Patel,Tyler J Murphy,Bradley A Malin,Chan Mi Park,Jia Heling,Sandeep Pagali,Allyson K Palmer,Jennifer St Sauver,Sunghwan Sohn,Elmer V Bernstam,Shyam Visweswaran,Yanshan Wang,Hongfang Liu","doi":"10.1093/gerona/glaf207","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nDelirium is often underdiagnosed in clinical practice and is not routinely coded for billing. While manual chart review can identify delirium, it is labor-intensive and impractical for large-scale studies. Natural language processing (NLP) can analyze unstructured text in electronic health records (EHRs) to extract meaningful clinical information.\r\n\r\nMETHODS\r\nTo support national integration of NLP for EHR-based delirium identification across different institutions, we launched the Delirium Interest Group within the national Evolve to Next-Gen Accrual to Clinical Trials (ENACT) NLP Working Group. This paper outlines our initial efforts to standardize, evaluate, and translate an NLP-based delirium detection model into the i2b2/ENACT platform.\r\n\r\nRESULTS\r\nMultisite contextual inquiry identified several key challenges, including variations in local screening practices (e.g., tools used, documentation frequency, and quality control), the need for harmonized definitions in the context of EHRs, and the complexity of modeling temporal logic. Multisite NLP evaluation revealed variable performance degradation driven by differences in delirium screening practices, clinical documentation patterns and semantics, and note syntactic structures.\r\n\r\nCONCLUSION\r\nOur work represents an important first step toward enabling scalable and standardized NLP-based delirium detection across institutions. By engaging diverse institutions through the ENACT NLP Working Group, we identified shared challenges and site-specific variations that impact model implementation and performance. Our collaborative approach enabled the development of a more robust framework for delirium identification across heterogeneous EHR systems. Future efforts will build on this foundation to enhance the validity, usability, and translational impact of delirium detection.","PeriodicalId":22892,"journal":{"name":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journals of Gerontology Series A: Biological Sciences and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glaf207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND Delirium is often underdiagnosed in clinical practice and is not routinely coded for billing. While manual chart review can identify delirium, it is labor-intensive and impractical for large-scale studies. Natural language processing (NLP) can analyze unstructured text in electronic health records (EHRs) to extract meaningful clinical information. METHODS To support national integration of NLP for EHR-based delirium identification across different institutions, we launched the Delirium Interest Group within the national Evolve to Next-Gen Accrual to Clinical Trials (ENACT) NLP Working Group. This paper outlines our initial efforts to standardize, evaluate, and translate an NLP-based delirium detection model into the i2b2/ENACT platform. RESULTS Multisite contextual inquiry identified several key challenges, including variations in local screening practices (e.g., tools used, documentation frequency, and quality control), the need for harmonized definitions in the context of EHRs, and the complexity of modeling temporal logic. Multisite NLP evaluation revealed variable performance degradation driven by differences in delirium screening practices, clinical documentation patterns and semantics, and note syntactic structures. CONCLUSION Our work represents an important first step toward enabling scalable and standardized NLP-based delirium detection across institutions. By engaging diverse institutions through the ENACT NLP Working Group, we identified shared challenges and site-specific variations that impact model implementation and performance. Our collaborative approach enabled the development of a more robust framework for delirium identification across heterogeneous EHR systems. Future efforts will build on this foundation to enhance the validity, usability, and translational impact of delirium detection.
通过开放健康自然语言处理联盟和ENACT网络推进谵妄检测。
背景:谵妄在临床实践中经常被误诊,并且通常不被编码为账单。虽然手工图表审查可以识别谵妄,但它是劳动密集型的,并且不适合大规模研究。自然语言处理(NLP)可以分析电子健康记录(EHRs)中的非结构化文本,以提取有意义的临床信息。方法:为了支持基于电子病历的谵妄鉴定的NLP在不同机构的全国整合,我们在国家进化到下一代临床试验(ENACT) NLP工作组中启动了谵妄兴趣小组。本文概述了我们为标准化、评估和将基于nlp的谵妄检测模型转化为i2b2/ENACT平台所做的初步努力。结果多站点上下文查询确定了几个关键挑战,包括当地筛选实践的差异(例如,使用的工具、文档频率和质量控制)、在电子病历背景下协调定义的必要性以及建模时间逻辑的复杂性。多站点NLP评估显示,谵妄筛查实践、临床文献模式和语义以及笔记语法结构的差异导致了不同的表现下降。我们的工作代表了跨机构实现可扩展和标准化的基于nlp的谵妄检测的重要的第一步。通过ENACT NLP工作组与不同的机构合作,我们确定了影响模型实现和性能的共同挑战和特定地点的变化。我们的协作方法使跨异构EHR系统的谵妄识别的更健壮的框架的发展成为可能。未来的努力将建立在这个基础上,以提高谵妄检测的有效性、可用性和转化影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信