Pre-attentive Pitch Processing of Harmonic Complex Sounds at Sensor and Source Levels: Comparing Simultaneously Recorded EEG and MEG Data.

IF 2.9 3区 医学 Q3 CLINICAL NEUROLOGY
Talya C Inbar, Jean-Michel Badier, Christian Bénar, Khoubeib Kanzari, Mireille Besson, Valérie Chanoine
{"title":"Pre-attentive Pitch Processing of Harmonic Complex Sounds at Sensor and Source Levels: Comparing Simultaneously Recorded EEG and MEG Data.","authors":"Talya C Inbar, Jean-Michel Badier, Christian Bénar, Khoubeib Kanzari, Mireille Besson, Valérie Chanoine","doi":"10.1007/s10548-025-01147-6","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography (EEG) and magnetoencephalography (MEG), two of the most widely used tools for studying human brain dynamics, are thought to have varying spatial resolutions. Here, we simultaneously recorded EEG and MEG data from 14 participants to directly compare their sensitivities - at both the sensor and source levels - to the auditory Mismatch Negativity (MMN in EEG and MMNm in MEG) elicited by pitch deviants. At the sensor level, we observed that negative components emerged in early (100-190 ms) and late (260-420 ms) latency windows. These responses displayed a fronto-central distribution in EEG and a centro-parietal distribution in MEG. MEG also yielded larger effect sizes than EEG, likely reflecting differences in signal-to-noise ratio between MEG and EEG. At the source level, our findings support the involvement of a fronto-temporal auditory MMN network. Both EEG and MEG identified generators in the superior temporal gyrus, Heschl's gyrus, interior frontal gyrus, and insular regions. Notably, EEG source localization revealed additional generators in the left superior temporal sulcus not detected by MEG, whereas MEG identified late components generators in the right hemisphere that were not observed with EEG. Taken together, these results suggest that EEG and MEG may provide complementary perspectives on auditory processing. However, given the inherent complexity of comparing data acquired with different methodologies and the limited sample size, our conclusions should be regarded as preliminary.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 6","pages":"71"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01147-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalography (EEG) and magnetoencephalography (MEG), two of the most widely used tools for studying human brain dynamics, are thought to have varying spatial resolutions. Here, we simultaneously recorded EEG and MEG data from 14 participants to directly compare their sensitivities - at both the sensor and source levels - to the auditory Mismatch Negativity (MMN in EEG and MMNm in MEG) elicited by pitch deviants. At the sensor level, we observed that negative components emerged in early (100-190 ms) and late (260-420 ms) latency windows. These responses displayed a fronto-central distribution in EEG and a centro-parietal distribution in MEG. MEG also yielded larger effect sizes than EEG, likely reflecting differences in signal-to-noise ratio between MEG and EEG. At the source level, our findings support the involvement of a fronto-temporal auditory MMN network. Both EEG and MEG identified generators in the superior temporal gyrus, Heschl's gyrus, interior frontal gyrus, and insular regions. Notably, EEG source localization revealed additional generators in the left superior temporal sulcus not detected by MEG, whereas MEG identified late components generators in the right hemisphere that were not observed with EEG. Taken together, these results suggest that EEG and MEG may provide complementary perspectives on auditory processing. However, given the inherent complexity of comparing data acquired with different methodologies and the limited sample size, our conclusions should be regarded as preliminary.

谐波复杂声音在传感器和声源水平上的预注意音高处理:同时记录的脑电图和脑磁图数据的比较。
脑电图(EEG)和脑磁图(MEG)是研究人类大脑动力学最广泛使用的两种工具,被认为具有不同的空间分辨率。在这里,我们同时记录了14名参与者的EEG和MEG数据,以直接比较他们在传感器和源水平上对音高偏差引起的听觉错配负性(EEG和MEG中的MMN)的敏感度。在传感器水平,我们观察到负成分出现在早期(100-190 ms)和晚期(260-420 ms)潜伏期窗口。这些反应在脑电图上呈额-中枢分布,在脑磁图上呈中心-顶叶分布。脑磁图也比脑电图产生更大的效应量,可能反映了脑磁图和脑电图之间信噪比的差异。在源头层面,我们的发现支持了额颞叶听觉MMN网络的参与。脑电图和脑磁图均在颞上回、颞下回、额内回和岛岛区发现了产生者。值得注意的是,脑电图源定位显示,在左侧颞上沟有其他脑电信号未被MEG检测到的产生源,而在右半球有脑电信号未被MEG检测到的晚期成分产生源。综上所述,这些结果表明脑电图和脑磁图可能为听觉加工提供了互补的视角。然而,考虑到比较不同方法获得的数据的固有复杂性和有限的样本量,我们的结论应被视为初步的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信