Lorraine Perciliano de Faria, Victor E Arana-Chavez, Lexie Shannon Holliday
{"title":"Alendronate Alters the Release of EVs by Raw 264.7 Osteoclasts.","authors":"Lorraine Perciliano de Faria, Victor E Arana-Chavez, Lexie Shannon Holliday","doi":"10.1369/00221554251379540","DOIUrl":null,"url":null,"abstract":"<p><p>Alendronate (ALN), a nitrogen-containing bisphosphonate, is widely used to treat bone disorders. While its inhibitory effect on osteoclast activity is well-established, its impact on the release of extracellular vesicles (EVs) is less understood. This study investigated the effect of ALN on the quantity and size distribution of EVs released by osteoclasts cultured on bovine bone slices pretreated with 10-µM ALN, 100-µM ALN, or vehicle. Raw 264.7 cells were differentiated into osteoclasts using RANK-ligand, and EVs were isolated from conditioned media. Tartrate-resistant acid phosphatase (TRAP) staining, phalloidin staining for actin rings, and nanoparticle tracking analysis (NTA) were performed. TRAP staining showed a significant reduction in the number of TRAP-positive multinucleated cells in the 100-µM ALN group, confirming that high-concentration ALN also impairs osteoclast formation. Phalloidin staining showed a significant decrease in actin ring formation in the 100-µM ALN group, confirming ALN's inhibitory effect on osteoclast activity. NTA revealed a lower total EV concentration in the 100-µM ALN group, with a distinct peak of smaller EVs (<100 nm), suggestive of exosomes. These findings indicate that ALN, especially at higher concentrations, alters the release profile of osteoclast-derived EVs, potentially affecting intercellular communication and bone remodeling beyond its direct inhibition of resorption.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":" ","pages":"221554251379540"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Histochemistry & Cytochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1369/00221554251379540","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alendronate (ALN), a nitrogen-containing bisphosphonate, is widely used to treat bone disorders. While its inhibitory effect on osteoclast activity is well-established, its impact on the release of extracellular vesicles (EVs) is less understood. This study investigated the effect of ALN on the quantity and size distribution of EVs released by osteoclasts cultured on bovine bone slices pretreated with 10-µM ALN, 100-µM ALN, or vehicle. Raw 264.7 cells were differentiated into osteoclasts using RANK-ligand, and EVs were isolated from conditioned media. Tartrate-resistant acid phosphatase (TRAP) staining, phalloidin staining for actin rings, and nanoparticle tracking analysis (NTA) were performed. TRAP staining showed a significant reduction in the number of TRAP-positive multinucleated cells in the 100-µM ALN group, confirming that high-concentration ALN also impairs osteoclast formation. Phalloidin staining showed a significant decrease in actin ring formation in the 100-µM ALN group, confirming ALN's inhibitory effect on osteoclast activity. NTA revealed a lower total EV concentration in the 100-µM ALN group, with a distinct peak of smaller EVs (<100 nm), suggestive of exosomes. These findings indicate that ALN, especially at higher concentrations, alters the release profile of osteoclast-derived EVs, potentially affecting intercellular communication and bone remodeling beyond its direct inhibition of resorption.
期刊介绍:
Journal of Histochemistry & Cytochemistry (JHC) has been a pre-eminent cell biology journal for over 50 years. Published monthly, JHC offers primary research articles, timely reviews, editorials, and perspectives on the structure and function of cells, tissues, and organs, as well as mechanisms of development, differentiation, and disease. JHC also publishes new developments in microscopy and imaging, especially where imaging techniques complement current genetic, molecular and biochemical investigations of cell and tissue function. JHC offers generous space for articles and recognizing the value of images that reveal molecular, cellular and tissue organization, offers free color to all authors.