{"title":"Gas diffusion-mediated single-sided in situ gradient mineralized silk fibroin membrane for enhanced guided bone regeneration.","authors":"Zhao Li, Ying Kong, Qun Zhang, Jing Han, Kezheng Chen, Baojin Ma","doi":"10.1016/j.dental.2025.09.017","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional guided bone regeneration (GBR) membranes face challenges in balancing mechanical strength, bioactivity, and osteoconductivity for effective periodontal bone regeneration. While collagen-based GBR membranes dominate clinical use, the weak mechanical properties and lack of osteoinductive capacity limit regeneration efficacy. Here, we presented a gas diffusion-mediated single-sided mineralization strategy to fabricate silk fibroin (SF)-based GBR membranes with dual barrier/osteoinductive functions. SF was dissolved in formic acid with Ca<sup>2 +</sup> and, optionally, other bioactive metal ions (BMIs, such as Sr<sup>2+</sup>, Cu<sup>2+</sup>, or Mg<sup>2+</sup>), and a colloid was formed after the evaporation of formic acid. Followed by gradient mineralization under CO<sub>2</sub>/NH<sub>3</sub> atmosphere and β-sheet induction via ethanol treatment, SF-Ca/X (X refers to other BMIs) membranes were prepared. Mineralized SF membranes featured a dense, mineral-free side for mechanical support and barrier, and an osteoinductive side by releasing BMIs. Interestingly, the calcium phosphate layer formed on the mineralized side, and the phase of CaCO<sub>3</sub> changed from calcite to vaterite, which helps phosphate mineralization. In vitro results demonstrated that the SF-Ca/Sr membrane enhanced osteogenic differentiation by upregulating BMP2/SMAD1 expression. In a rat mandibular defect model, the SF-Ca/Sr membrane significantly promotes new bone regeneration and collagen formation. Overall, this gas diffusion-mediated single-sided gradient mineralization approach integrates barrier properties with localized bioactivity, allowing for the required barrier/osteoinduction functions in the GBR process in one membrane.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2025.09.017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional guided bone regeneration (GBR) membranes face challenges in balancing mechanical strength, bioactivity, and osteoconductivity for effective periodontal bone regeneration. While collagen-based GBR membranes dominate clinical use, the weak mechanical properties and lack of osteoinductive capacity limit regeneration efficacy. Here, we presented a gas diffusion-mediated single-sided mineralization strategy to fabricate silk fibroin (SF)-based GBR membranes with dual barrier/osteoinductive functions. SF was dissolved in formic acid with Ca2 + and, optionally, other bioactive metal ions (BMIs, such as Sr2+, Cu2+, or Mg2+), and a colloid was formed after the evaporation of formic acid. Followed by gradient mineralization under CO2/NH3 atmosphere and β-sheet induction via ethanol treatment, SF-Ca/X (X refers to other BMIs) membranes were prepared. Mineralized SF membranes featured a dense, mineral-free side for mechanical support and barrier, and an osteoinductive side by releasing BMIs. Interestingly, the calcium phosphate layer formed on the mineralized side, and the phase of CaCO3 changed from calcite to vaterite, which helps phosphate mineralization. In vitro results demonstrated that the SF-Ca/Sr membrane enhanced osteogenic differentiation by upregulating BMP2/SMAD1 expression. In a rat mandibular defect model, the SF-Ca/Sr membrane significantly promotes new bone regeneration and collagen formation. Overall, this gas diffusion-mediated single-sided gradient mineralization approach integrates barrier properties with localized bioactivity, allowing for the required barrier/osteoinduction functions in the GBR process in one membrane.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.