Yubin Hong, Suho Park, Jinwoo Lee, Daeun Chu, Daewha Hong
{"title":"Tyrosine-conjugated diethylene glycol (Tyr-EG2) as a small-molecule material for universal antifouling surface coatings","authors":"Yubin Hong, Suho Park, Jinwoo Lee, Daeun Chu, Daewha Hong","doi":"10.1002/bkcs.70062","DOIUrl":null,"url":null,"abstract":"<p>This paper reports the development of a universal antifouling coating based on a small molecule, tyrosine-conjugated diethylene glycol (Tyr-EG<sub>2</sub>). Tyrosine, a natural precursor in melanin biosynthesis, undergoes tyrosinase-catalyzed oxidation to initiate film formation on various surfaces. Building on this principle, Tyr-EG<sub>2</sub> was designed to form a melanin-mimetic poly(Tyr-EG<sub>2</sub>) film through enzymatic oxidation under mild aqueous conditions (pH 7.4). In contrast to polymeric systems composed of repeating ethylene glycol and catechol units, which often suffer from batch-to-batch variations owing to their high molecular weight and structural complexity, Tyr-EG<sub>2</sub> exhibits a well-defined, low molecular weight, which enables consistent synthesis. Moreover, compared with catechol, the phenol-based structure of Tyr-EG<sub>2</sub> provides enhanced resistance to auto-oxidation under ambient conditions. The resulting poly(Tyr-EG<sub>2</sub>) films exhibited excellent coating capabilities on a wide range of substrates, as well as antifouling properties, reducing nonspecific protein adsorption and marine organism adhesion. This simple, mild, and versatile strategy offers a practical platform for achieving antifouling coatings, which are required in the fields of biosensors, marine equipment, and medical devices.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"46 9","pages":"907-913"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.70062","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports the development of a universal antifouling coating based on a small molecule, tyrosine-conjugated diethylene glycol (Tyr-EG2). Tyrosine, a natural precursor in melanin biosynthesis, undergoes tyrosinase-catalyzed oxidation to initiate film formation on various surfaces. Building on this principle, Tyr-EG2 was designed to form a melanin-mimetic poly(Tyr-EG2) film through enzymatic oxidation under mild aqueous conditions (pH 7.4). In contrast to polymeric systems composed of repeating ethylene glycol and catechol units, which often suffer from batch-to-batch variations owing to their high molecular weight and structural complexity, Tyr-EG2 exhibits a well-defined, low molecular weight, which enables consistent synthesis. Moreover, compared with catechol, the phenol-based structure of Tyr-EG2 provides enhanced resistance to auto-oxidation under ambient conditions. The resulting poly(Tyr-EG2) films exhibited excellent coating capabilities on a wide range of substrates, as well as antifouling properties, reducing nonspecific protein adsorption and marine organism adhesion. This simple, mild, and versatile strategy offers a practical platform for achieving antifouling coatings, which are required in the fields of biosensors, marine equipment, and medical devices.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.