Analytically one-dimensional planes and the combinatorial Loewner property

IF 1.2 2区 数学 Q1 MATHEMATICS
Guy C. David, Sylvester Eriksson-Bique
{"title":"Analytically one-dimensional planes and the combinatorial Loewner property","authors":"Guy C. David,&nbsp;Sylvester Eriksson-Bique","doi":"10.1112/jlms.70305","DOIUrl":null,"url":null,"abstract":"<p>It is a major problem in analysis on metric spaces to understand when a metric space is quasisymmetric to a space with strong analytic structure, a so-called Loewner space. A conjecture of Kleiner, recently disproven by Anttila and the second author, proposes a combinatorial sufficient condition. The counterexamples constructed are all topologically one-dimensional, and the sufficiency of Kleiner's condition remains open for most other examples. A separate question of Kleiner and Schioppa, apparently unrelated to the problem above, asks about the existence of ‘analytically one-dimensional planes’: metric measure spaces quasisymmetric to the Euclidean plane but supporting a one-dimensional analytic structure in the sense of Cheeger. In this paper, we construct an example for which the conclusion of Kleiner's conjecture is not known to hold. We show that <i>either</i> this conclusion fails in our example <i>or</i> there exists an ‘analytically one-dimensional plane’. Thus, our construction either yields a new counterexample to Kleiner's conjecture, different in kind from those of Anttila and the second author, or a resolution to the problem of Kleiner–Schioppa.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70305","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is a major problem in analysis on metric spaces to understand when a metric space is quasisymmetric to a space with strong analytic structure, a so-called Loewner space. A conjecture of Kleiner, recently disproven by Anttila and the second author, proposes a combinatorial sufficient condition. The counterexamples constructed are all topologically one-dimensional, and the sufficiency of Kleiner's condition remains open for most other examples. A separate question of Kleiner and Schioppa, apparently unrelated to the problem above, asks about the existence of ‘analytically one-dimensional planes’: metric measure spaces quasisymmetric to the Euclidean plane but supporting a one-dimensional analytic structure in the sense of Cheeger. In this paper, we construct an example for which the conclusion of Kleiner's conjecture is not known to hold. We show that either this conclusion fails in our example or there exists an ‘analytically one-dimensional plane’. Thus, our construction either yields a new counterexample to Kleiner's conjecture, different in kind from those of Anttila and the second author, or a resolution to the problem of Kleiner–Schioppa.

Abstract Image

解析一维平面和组合洛厄纳性质
如何理解度量空间与具有强解析结构的空间(即所谓的洛厄纳空间)拟对称是度量空间分析中的一个主要问题。Kleiner的一个猜想(最近被antitila和第二作者推翻)提出了一个组合充分条件。所构造的反例都是拓扑一维的,Kleiner条件的充分性对大多数其他例子仍然是开放的。Kleiner和Schioppa的另一个问题,显然与上面的问题无关,问的是“解析一维平面”的存在性:度量测量空间与欧几里得平面拟对称,但支持Cheeger意义上的一维解析结构。本文构造了一个已知Kleiner猜想结论不成立的例子。我们证明这个结论在我们的例子中不成立,或者存在一个“解析一维平面”。因此,我们的构建要么为Kleiner的猜想提供了一个新的反例,与Anttila和第二作者的猜想在性质上有所不同,要么解决了Kleiner - schioppa的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信